Metamath Proof Explorer


Theorem fniinfv

Description: The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion fniinfv
|- ( F Fn A -> |^|_ x e. A ( F ` x ) = |^| ran F )

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( F ` x ) e. _V
2 1 dfiin2
 |-  |^|_ x e. A ( F ` x ) = |^| { y | E. x e. A y = ( F ` x ) }
3 fnrnfv
 |-  ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } )
4 3 inteqd
 |-  ( F Fn A -> |^| ran F = |^| { y | E. x e. A y = ( F ` x ) } )
5 2 4 eqtr4id
 |-  ( F Fn A -> |^|_ x e. A ( F ` x ) = |^| ran F )