Step |
Hyp |
Ref |
Expression |
1 |
|
fnsnfv |
|- ( ( F Fn A /\ B e. A ) -> { ( F ` B ) } = ( F " { B } ) ) |
2 |
1
|
3adant3 |
|- ( ( F Fn A /\ B e. A /\ C e. A ) -> { ( F ` B ) } = ( F " { B } ) ) |
3 |
|
fnsnfv |
|- ( ( F Fn A /\ C e. A ) -> { ( F ` C ) } = ( F " { C } ) ) |
4 |
3
|
3adant2 |
|- ( ( F Fn A /\ B e. A /\ C e. A ) -> { ( F ` C ) } = ( F " { C } ) ) |
5 |
2 4
|
uneq12d |
|- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( { ( F ` B ) } u. { ( F ` C ) } ) = ( ( F " { B } ) u. ( F " { C } ) ) ) |
6 |
5
|
eqcomd |
|- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( ( F " { B } ) u. ( F " { C } ) ) = ( { ( F ` B ) } u. { ( F ` C ) } ) ) |
7 |
|
df-pr |
|- { B , C } = ( { B } u. { C } ) |
8 |
7
|
imaeq2i |
|- ( F " { B , C } ) = ( F " ( { B } u. { C } ) ) |
9 |
|
imaundi |
|- ( F " ( { B } u. { C } ) ) = ( ( F " { B } ) u. ( F " { C } ) ) |
10 |
8 9
|
eqtri |
|- ( F " { B , C } ) = ( ( F " { B } ) u. ( F " { C } ) ) |
11 |
|
df-pr |
|- { ( F ` B ) , ( F ` C ) } = ( { ( F ` B ) } u. { ( F ` C ) } ) |
12 |
6 10 11
|
3eqtr4g |
|- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( F " { B , C } ) = { ( F ` B ) , ( F ` C ) } ) |