Step |
Hyp |
Ref |
Expression |
1 |
|
fnimatp.1 |
|- ( ph -> F Fn D ) |
2 |
|
fnimatp.2 |
|- ( ph -> A e. D ) |
3 |
|
fnimatp.3 |
|- ( ph -> B e. D ) |
4 |
|
fnimatp.4 |
|- ( ph -> C e. D ) |
5 |
|
fnimapr |
|- ( ( F Fn D /\ A e. D /\ B e. D ) -> ( F " { A , B } ) = { ( F ` A ) , ( F ` B ) } ) |
6 |
1 2 3 5
|
syl3anc |
|- ( ph -> ( F " { A , B } ) = { ( F ` A ) , ( F ` B ) } ) |
7 |
|
fnsnfv |
|- ( ( F Fn D /\ C e. D ) -> { ( F ` C ) } = ( F " { C } ) ) |
8 |
1 4 7
|
syl2anc |
|- ( ph -> { ( F ` C ) } = ( F " { C } ) ) |
9 |
8
|
eqcomd |
|- ( ph -> ( F " { C } ) = { ( F ` C ) } ) |
10 |
6 9
|
uneq12d |
|- ( ph -> ( ( F " { A , B } ) u. ( F " { C } ) ) = ( { ( F ` A ) , ( F ` B ) } u. { ( F ` C ) } ) ) |
11 |
|
df-tp |
|- { A , B , C } = ( { A , B } u. { C } ) |
12 |
11
|
imaeq2i |
|- ( F " { A , B , C } ) = ( F " ( { A , B } u. { C } ) ) |
13 |
|
imaundi |
|- ( F " ( { A , B } u. { C } ) ) = ( ( F " { A , B } ) u. ( F " { C } ) ) |
14 |
12 13
|
eqtri |
|- ( F " { A , B , C } ) = ( ( F " { A , B } ) u. ( F " { C } ) ) |
15 |
|
df-tp |
|- { ( F ` A ) , ( F ` B ) , ( F ` C ) } = ( { ( F ` A ) , ( F ` B ) } u. { ( F ` C ) } ) |
16 |
10 14 15
|
3eqtr4g |
|- ( ph -> ( F " { A , B , C } ) = { ( F ` A ) , ( F ` B ) , ( F ` C ) } ) |