| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
| 2 |
1
|
ineq1d |
|- ( F Fn A -> ( ( F |` A ) i^i _I ) = ( F i^i _I ) ) |
| 3 |
|
inres |
|- ( _I i^i ( F |` A ) ) = ( ( _I i^i F ) |` A ) |
| 4 |
|
incom |
|- ( _I i^i F ) = ( F i^i _I ) |
| 5 |
4
|
reseq1i |
|- ( ( _I i^i F ) |` A ) = ( ( F i^i _I ) |` A ) |
| 6 |
3 5
|
eqtri |
|- ( _I i^i ( F |` A ) ) = ( ( F i^i _I ) |` A ) |
| 7 |
|
incom |
|- ( ( F |` A ) i^i _I ) = ( _I i^i ( F |` A ) ) |
| 8 |
|
inres |
|- ( F i^i ( _I |` A ) ) = ( ( F i^i _I ) |` A ) |
| 9 |
6 7 8
|
3eqtr4i |
|- ( ( F |` A ) i^i _I ) = ( F i^i ( _I |` A ) ) |
| 10 |
2 9
|
eqtr3di |
|- ( F Fn A -> ( F i^i _I ) = ( F i^i ( _I |` A ) ) ) |
| 11 |
10
|
dmeqd |
|- ( F Fn A -> dom ( F i^i _I ) = dom ( F i^i ( _I |` A ) ) ) |
| 12 |
|
fnresi |
|- ( _I |` A ) Fn A |
| 13 |
|
fndmin |
|- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> dom ( F i^i ( _I |` A ) ) = { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } ) |
| 14 |
12 13
|
mpan2 |
|- ( F Fn A -> dom ( F i^i ( _I |` A ) ) = { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } ) |
| 15 |
|
fvresi |
|- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
| 16 |
15
|
eqeq2d |
|- ( x e. A -> ( ( F ` x ) = ( ( _I |` A ) ` x ) <-> ( F ` x ) = x ) ) |
| 17 |
16
|
rabbiia |
|- { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) = x } |
| 18 |
17
|
a1i |
|- ( F Fn A -> { x e. A | ( F ` x ) = ( ( _I |` A ) ` x ) } = { x e. A | ( F ` x ) = x } ) |
| 19 |
11 14 18
|
3eqtrd |
|- ( F Fn A -> dom ( F i^i _I ) = { x e. A | ( F ` x ) = x } ) |