Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014) (Proof shortened by Mario Carneiro , 28-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fniniseg | |- ( F Fn A -> ( C e. ( `' F " { B } ) <-> ( C e. A /\ ( F ` C ) = B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreima | |- ( F Fn A -> ( C e. ( `' F " { B } ) <-> ( C e. A /\ ( F ` C ) e. { B } ) ) ) |
|
2 | fvex | |- ( F ` C ) e. _V |
|
3 | 2 | elsn | |- ( ( F ` C ) e. { B } <-> ( F ` C ) = B ) |
4 | 3 | anbi2i | |- ( ( C e. A /\ ( F ` C ) e. { B } ) <-> ( C e. A /\ ( F ` C ) = B ) ) |
5 | 1 4 | bitrdi | |- ( F Fn A -> ( C e. ( `' F " { B } ) <-> ( C e. A /\ ( F ` C ) = B ) ) ) |