Step |
Hyp |
Ref |
Expression |
1 |
|
fnlimcnv.1 |
|- F/_ x F |
2 |
|
fnlimcnv.2 |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
3 |
|
fnlimcnv.3 |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
4 |
|
fnlimcnv.4 |
|- ( ph -> X e. D ) |
5 |
|
fveq2 |
|- ( y = X -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` X ) ) |
6 |
5
|
mpteq2dv |
|- ( y = X -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) |
7 |
6
|
eleq1d |
|- ( y = X -> ( ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
8 |
|
nfcv |
|- F/_ x Z |
9 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
10 |
|
nfcv |
|- F/_ x m |
11 |
1 10
|
nffv |
|- F/_ x ( F ` m ) |
12 |
11
|
nfdm |
|- F/_ x dom ( F ` m ) |
13 |
9 12
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
14 |
8 13
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
15 |
|
nfcv |
|- F/_ y U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
16 |
|
nfv |
|- F/ y ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
17 |
|
nfcv |
|- F/_ x y |
18 |
11 17
|
nffv |
|- F/_ x ( ( F ` m ) ` y ) |
19 |
8 18
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) |
20 |
|
nfcv |
|- F/_ x dom ~~> |
21 |
19 20
|
nfel |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> |
22 |
|
fveq2 |
|- ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) |
23 |
22
|
mpteq2dv |
|- ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) |
24 |
23
|
eleq1d |
|- ( x = y -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> ) ) |
25 |
14 15 16 21 24
|
cbvrabw |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
26 |
2 25
|
eqtri |
|- D = { y e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` y ) ) e. dom ~~> } |
27 |
7 26
|
elrab2 |
|- ( X e. D <-> ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
28 |
4 27
|
sylib |
|- ( ph -> ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
29 |
28
|
simprd |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) |
30 |
|
climdm |
|- ( ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
31 |
29 30
|
sylib |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
32 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
33 |
2 32
|
nfcxfr |
|- F/_ x D |
34 |
33 1 3 4
|
fnlimfv |
|- ( ph -> ( G ` X ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |
35 |
34
|
eqcomd |
|- ( ph -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) = ( G ` X ) ) |
36 |
31 35
|
breqtrd |
|- ( ph -> ( m e. Z |-> ( ( F ` m ) ` X ) ) ~~> ( G ` X ) ) |