Step |
Hyp |
Ref |
Expression |
1 |
|
fnlimf.p |
|- F/ m ph |
2 |
|
fnlimf.m |
|- F/_ m F |
3 |
|
fnlimf.n |
|- F/_ x F |
4 |
|
fnlimf.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
fnlimf.f |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
6 |
|
fnlimf.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
7 |
|
fnlimf.g |
|- G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) |
8 |
|
nfv |
|- F/ m z e. D |
9 |
1 8
|
nfan |
|- F/ m ( ph /\ z e. D ) |
10 |
5
|
adantlr |
|- ( ( ( ph /\ z e. D ) /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
11 |
|
simpr |
|- ( ( ph /\ z e. D ) -> z e. D ) |
12 |
9 2 3 4 10 6 11
|
fnlimfvre |
|- ( ( ph /\ z e. D ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) e. RR ) |
13 |
|
nfrab1 |
|- F/_ x { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
14 |
6 13
|
nfcxfr |
|- F/_ x D |
15 |
|
nfcv |
|- F/_ z D |
16 |
|
nfcv |
|- F/_ z ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) |
17 |
|
nfcv |
|- F/_ x ~~> |
18 |
|
nfcv |
|- F/_ x Z |
19 |
|
nfcv |
|- F/_ x m |
20 |
3 19
|
nffv |
|- F/_ x ( F ` m ) |
21 |
|
nfcv |
|- F/_ x z |
22 |
20 21
|
nffv |
|- F/_ x ( ( F ` m ) ` z ) |
23 |
18 22
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` z ) ) |
24 |
17 23
|
nffv |
|- F/_ x ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
25 |
|
fveq2 |
|- ( x = z -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` z ) ) |
26 |
25
|
mpteq2dv |
|- ( x = z -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` z ) ) ) |
27 |
26
|
fveq2d |
|- ( x = z -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
28 |
14 15 16 24 27
|
cbvmptf |
|- ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( z e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
29 |
7 28
|
eqtri |
|- G = ( z e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` z ) ) ) ) |
30 |
12 29
|
fmptd |
|- ( ph -> G : D --> RR ) |