Step |
Hyp |
Ref |
Expression |
1 |
|
fnlimfvre.p |
|- F/ m ph |
2 |
|
fnlimfvre.m |
|- F/_ m F |
3 |
|
fnlimfvre.n |
|- F/_ x F |
4 |
|
fnlimfvre.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
fnlimfvre.f |
|- ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) |
6 |
|
fnlimfvre.d |
|- D = { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
7 |
|
fnlimfvre.x |
|- ( ph -> X e. D ) |
8 |
|
nfcv |
|- F/_ x Z |
9 |
|
nfcv |
|- F/_ x ( ZZ>= ` n ) |
10 |
|
nfcv |
|- F/_ x m |
11 |
3 10
|
nffv |
|- F/_ x ( F ` m ) |
12 |
11
|
nfdm |
|- F/_ x dom ( F ` m ) |
13 |
9 12
|
nfiin |
|- F/_ x |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
14 |
8 13
|
nfiun |
|- F/_ x U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
15 |
14
|
ssrab2f |
|- { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
16 |
6 15
|
eqsstri |
|- D C_ U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
17 |
16
|
sseli |
|- ( X e. D -> X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
18 |
|
eliun |
|- ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> E. n e. Z X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
19 |
17 18
|
sylib |
|- ( X e. D -> E. n e. Z X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
20 |
7 19
|
syl |
|- ( ph -> E. n e. Z X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
21 |
|
nfv |
|- F/ n ph |
22 |
|
nfv |
|- F/ n ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR |
23 |
|
nfv |
|- F/ m n e. Z |
24 |
|
nfcv |
|- F/_ m X |
25 |
|
nfii1 |
|- F/_ m |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
26 |
24 25
|
nfel |
|- F/ m X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
27 |
1 23 26
|
nf3an |
|- F/ m ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) |
28 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
29 |
4
|
eleq2i |
|- ( n e. Z <-> n e. ( ZZ>= ` M ) ) |
30 |
29
|
biimpi |
|- ( n e. Z -> n e. ( ZZ>= ` M ) ) |
31 |
28 30
|
sselid |
|- ( n e. Z -> n e. ZZ ) |
32 |
31
|
3ad2ant2 |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> n e. ZZ ) |
33 |
|
eqid |
|- ( ZZ>= ` n ) = ( ZZ>= ` n ) |
34 |
4
|
fvexi |
|- Z e. _V |
35 |
34
|
a1i |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> Z e. _V ) |
36 |
4
|
uztrn2 |
|- ( ( n e. Z /\ j e. ( ZZ>= ` n ) ) -> j e. Z ) |
37 |
36
|
ssd |
|- ( n e. Z -> ( ZZ>= ` n ) C_ Z ) |
38 |
37
|
3ad2ant2 |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) C_ Z ) |
39 |
|
fvexd |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ m e. Z ) -> ( ( F ` m ) ` X ) e. _V ) |
40 |
|
fvexd |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) e. _V ) |
41 |
|
ssidd |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` n ) ) |
42 |
|
fvexd |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. _V ) |
43 |
|
eqidd |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) = ( ( F ` m ) ` X ) ) |
44 |
27 32 33 35 38 39 40 41 42 43
|
climfveqmpt |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) = ( ~~> ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) ) |
45 |
6
|
eleq2i |
|- ( X e. D <-> X e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } ) |
46 |
45
|
biimpi |
|- ( X e. D -> X e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } ) |
47 |
|
nfcv |
|- F/_ x X |
48 |
11 47
|
nffv |
|- F/_ x ( ( F ` m ) ` X ) |
49 |
8 48
|
nfmpt |
|- F/_ x ( m e. Z |-> ( ( F ` m ) ` X ) ) |
50 |
|
nfcv |
|- F/_ x dom ~~> |
51 |
49 50
|
nfel |
|- F/ x ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> |
52 |
|
fveq2 |
|- ( x = X -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` X ) ) |
53 |
52
|
mpteq2dv |
|- ( x = X -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) |
54 |
53
|
eleq1d |
|- ( x = X -> ( ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> <-> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
55 |
47 14 51 54
|
elrabf |
|- ( X e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } <-> ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
56 |
55
|
biimpi |
|- ( X e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } -> ( X e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
57 |
56
|
simprd |
|- ( X e. { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } -> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) |
58 |
46 57
|
syl |
|- ( X e. D -> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) |
59 |
58
|
adantr |
|- ( ( X e. D /\ n e. Z ) -> ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) |
60 |
|
nfmpt1 |
|- F/_ m ( m e. Z |-> ( ( F ` m ) ` x ) ) |
61 |
|
nfcv |
|- F/_ m dom ~~> |
62 |
60 61
|
nfel |
|- F/ m ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> |
63 |
|
nfv |
|- F/ m j e. Z |
64 |
63
|
nfci |
|- F/_ m Z |
65 |
64 25
|
nfiun |
|- F/_ m U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) |
66 |
62 65
|
nfrabw |
|- F/_ m { x e. U_ n e. Z |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) | ( m e. Z |-> ( ( F ` m ) ` x ) ) e. dom ~~> } |
67 |
6 66
|
nfcxfr |
|- F/_ m D |
68 |
24 67
|
nfel |
|- F/ m X e. D |
69 |
68 23
|
nfan |
|- F/ m ( X e. D /\ n e. Z ) |
70 |
31
|
adantl |
|- ( ( X e. D /\ n e. Z ) -> n e. ZZ ) |
71 |
34
|
a1i |
|- ( ( X e. D /\ n e. Z ) -> Z e. _V ) |
72 |
37
|
adantl |
|- ( ( X e. D /\ n e. Z ) -> ( ZZ>= ` n ) C_ Z ) |
73 |
|
fvexd |
|- ( ( ( X e. D /\ n e. Z ) /\ m e. Z ) -> ( ( F ` m ) ` X ) e. _V ) |
74 |
|
fvexd |
|- ( ( X e. D /\ n e. Z ) -> ( ZZ>= ` n ) e. _V ) |
75 |
|
ssidd |
|- ( ( X e. D /\ n e. Z ) -> ( ZZ>= ` n ) C_ ( ZZ>= ` n ) ) |
76 |
|
fvexd |
|- ( ( ( X e. D /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) e. _V ) |
77 |
|
eqidd |
|- ( ( ( X e. D /\ n e. Z ) /\ m e. ( ZZ>= ` n ) ) -> ( ( F ` m ) ` X ) = ( ( F ` m ) ` X ) ) |
78 |
69 70 33 71 72 73 74 75 76 77
|
climeldmeqmpt |
|- ( ( X e. D /\ n e. Z ) -> ( ( m e. Z |-> ( ( F ` m ) ` X ) ) e. dom ~~> <-> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) ) |
79 |
59 78
|
mpbid |
|- ( ( X e. D /\ n e. Z ) -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) e. dom ~~> ) |
80 |
|
climdm |
|- ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) e. dom ~~> <-> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) ) |
81 |
79 80
|
sylib |
|- ( ( X e. D /\ n e. Z ) -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) ) |
82 |
7 81
|
sylan |
|- ( ( ph /\ n e. Z ) -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) ) |
83 |
82
|
3adant3 |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ~~> ( ~~> ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) ) |
84 |
|
simpl1 |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ j e. ( ZZ>= ` n ) ) -> ph ) |
85 |
|
simpl2 |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ j e. ( ZZ>= ` n ) ) -> n e. Z ) |
86 |
|
nfcv |
|- F/_ j dom ( F ` m ) |
87 |
|
nfcv |
|- F/_ m j |
88 |
2 87
|
nffv |
|- F/_ m ( F ` j ) |
89 |
88
|
nfdm |
|- F/_ m dom ( F ` j ) |
90 |
|
fveq2 |
|- ( m = j -> ( F ` m ) = ( F ` j ) ) |
91 |
90
|
dmeqd |
|- ( m = j -> dom ( F ` m ) = dom ( F ` j ) ) |
92 |
86 89 91
|
cbviin |
|- |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) = |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) |
93 |
92
|
eleq2i |
|- ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) <-> X e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) ) |
94 |
93
|
biimpi |
|- ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> X e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) ) |
95 |
94
|
adantr |
|- ( ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ j e. ( ZZ>= ` n ) ) -> X e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) ) |
96 |
|
simpr |
|- ( ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ j e. ( ZZ>= ` n ) ) -> j e. ( ZZ>= ` n ) ) |
97 |
|
eliinid |
|- ( ( X e. |^|_ j e. ( ZZ>= ` n ) dom ( F ` j ) /\ j e. ( ZZ>= ` n ) ) -> X e. dom ( F ` j ) ) |
98 |
95 96 97
|
syl2anc |
|- ( ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) /\ j e. ( ZZ>= ` n ) ) -> X e. dom ( F ` j ) ) |
99 |
98
|
3ad2antl3 |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ j e. ( ZZ>= ` n ) ) -> X e. dom ( F ` j ) ) |
100 |
|
simpr |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ j e. ( ZZ>= ` n ) ) -> j e. ( ZZ>= ` n ) ) |
101 |
|
id |
|- ( j e. ( ZZ>= ` n ) -> j e. ( ZZ>= ` n ) ) |
102 |
|
fvexd |
|- ( j e. ( ZZ>= ` n ) -> ( ( F ` j ) ` X ) e. _V ) |
103 |
88 24
|
nffv |
|- F/_ m ( ( F ` j ) ` X ) |
104 |
90
|
fveq1d |
|- ( m = j -> ( ( F ` m ) ` X ) = ( ( F ` j ) ` X ) ) |
105 |
|
eqid |
|- ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) = ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) |
106 |
87 103 104 105
|
fvmptf |
|- ( ( j e. ( ZZ>= ` n ) /\ ( ( F ` j ) ` X ) e. _V ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` j ) = ( ( F ` j ) ` X ) ) |
107 |
101 102 106
|
syl2anc |
|- ( j e. ( ZZ>= ` n ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` j ) = ( ( F ` j ) ` X ) ) |
108 |
107
|
adantl |
|- ( ( ( ph /\ n e. Z /\ X e. dom ( F ` j ) ) /\ j e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` j ) = ( ( F ` j ) ` X ) ) |
109 |
|
simpll |
|- ( ( ( ph /\ n e. Z ) /\ j e. ( ZZ>= ` n ) ) -> ph ) |
110 |
36
|
adantll |
|- ( ( ( ph /\ n e. Z ) /\ j e. ( ZZ>= ` n ) ) -> j e. Z ) |
111 |
1 63
|
nfan |
|- F/ m ( ph /\ j e. Z ) |
112 |
|
nfcv |
|- F/_ m RR |
113 |
88 89 112
|
nff |
|- F/ m ( F ` j ) : dom ( F ` j ) --> RR |
114 |
111 113
|
nfim |
|- F/ m ( ( ph /\ j e. Z ) -> ( F ` j ) : dom ( F ` j ) --> RR ) |
115 |
|
eleq1w |
|- ( m = j -> ( m e. Z <-> j e. Z ) ) |
116 |
115
|
anbi2d |
|- ( m = j -> ( ( ph /\ m e. Z ) <-> ( ph /\ j e. Z ) ) ) |
117 |
90 91
|
feq12d |
|- ( m = j -> ( ( F ` m ) : dom ( F ` m ) --> RR <-> ( F ` j ) : dom ( F ` j ) --> RR ) ) |
118 |
116 117
|
imbi12d |
|- ( m = j -> ( ( ( ph /\ m e. Z ) -> ( F ` m ) : dom ( F ` m ) --> RR ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) : dom ( F ` j ) --> RR ) ) ) |
119 |
114 118 5
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) : dom ( F ` j ) --> RR ) |
120 |
109 110 119
|
syl2anc |
|- ( ( ( ph /\ n e. Z ) /\ j e. ( ZZ>= ` n ) ) -> ( F ` j ) : dom ( F ` j ) --> RR ) |
121 |
120
|
3adantl3 |
|- ( ( ( ph /\ n e. Z /\ X e. dom ( F ` j ) ) /\ j e. ( ZZ>= ` n ) ) -> ( F ` j ) : dom ( F ` j ) --> RR ) |
122 |
|
simpl3 |
|- ( ( ( ph /\ n e. Z /\ X e. dom ( F ` j ) ) /\ j e. ( ZZ>= ` n ) ) -> X e. dom ( F ` j ) ) |
123 |
121 122
|
ffvelrnd |
|- ( ( ( ph /\ n e. Z /\ X e. dom ( F ` j ) ) /\ j e. ( ZZ>= ` n ) ) -> ( ( F ` j ) ` X ) e. RR ) |
124 |
108 123
|
eqeltrd |
|- ( ( ( ph /\ n e. Z /\ X e. dom ( F ` j ) ) /\ j e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` j ) e. RR ) |
125 |
84 85 99 100 124
|
syl31anc |
|- ( ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) /\ j e. ( ZZ>= ` n ) ) -> ( ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ` j ) e. RR ) |
126 |
33 32 83 125
|
climrecl |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ~~> ` ( m e. ( ZZ>= ` n ) |-> ( ( F ` m ) ` X ) ) ) e. RR ) |
127 |
44 126
|
eqeltrd |
|- ( ( ph /\ n e. Z /\ X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) |
128 |
127
|
3exp |
|- ( ph -> ( n e. Z -> ( X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) ) ) |
129 |
21 22 128
|
rexlimd |
|- ( ph -> ( E. n e. Z X e. |^|_ m e. ( ZZ>= ` n ) dom ( F ` m ) -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) ) |
130 |
20 129
|
mpd |
|- ( ph -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. RR ) |