Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | fnmap | |- ^m Fn ( _V X. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map | |- ^m = ( x e. _V , y e. _V |-> { f | f : y --> x } ) |
|
2 | mapex | |- ( ( y e. _V /\ x e. _V ) -> { f | f : y --> x } e. _V ) |
|
3 | 2 | el2v | |- { f | f : y --> x } e. _V |
4 | 1 3 | fnmpoi | |- ^m Fn ( _V X. _V ) |