Metamath Proof Explorer


Theorem fnmpoi

Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)

Ref Expression
Hypotheses fmpo.1
|- F = ( x e. A , y e. B |-> C )
fnmpoi.2
|- C e. _V
Assertion fnmpoi
|- F Fn ( A X. B )

Proof

Step Hyp Ref Expression
1 fmpo.1
 |-  F = ( x e. A , y e. B |-> C )
2 fnmpoi.2
 |-  C e. _V
3 2 rgen2w
 |-  A. x e. A A. y e. B C e. _V
4 1 fnmpo
 |-  ( A. x e. A A. y e. B C e. _V -> F Fn ( A X. B ) )
5 3 4 ax-mp
 |-  F Fn ( A X. B )