Metamath Proof Explorer


Theorem fnmptd

Description: The maps-to notation defines a function with domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnmptd.1
|- F/ x ph
fnmptd.2
|- ( ( ph /\ x e. A ) -> B e. V )
fnmptd.3
|- F = ( x e. A |-> B )
Assertion fnmptd
|- ( ph -> F Fn A )

Proof

Step Hyp Ref Expression
1 fnmptd.1
 |-  F/ x ph
2 fnmptd.2
 |-  ( ( ph /\ x e. A ) -> B e. V )
3 fnmptd.3
 |-  F = ( x e. A |-> B )
4 2 ex
 |-  ( ph -> ( x e. A -> B e. V ) )
5 1 4 ralrimi
 |-  ( ph -> A. x e. A B e. V )
6 3 fnmpt
 |-  ( A. x e. A B e. V -> F Fn A )
7 5 6 syl
 |-  ( ph -> F Fn A )