Metamath Proof Explorer


Theorem fnmptf

Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013) (Revised by Thierry Arnoux, 10-May-2017)

Ref Expression
Hypothesis mptfnf.0
|- F/_ x A
Assertion fnmptf
|- ( A. x e. A B e. V -> ( x e. A |-> B ) Fn A )

Proof

Step Hyp Ref Expression
1 mptfnf.0
 |-  F/_ x A
2 elex
 |-  ( B e. V -> B e. _V )
3 2 ralimi
 |-  ( A. x e. A B e. V -> A. x e. A B e. _V )
4 1 mptfnf
 |-  ( A. x e. A B e. _V <-> ( x e. A |-> B ) Fn A )
5 3 4 sylib
 |-  ( A. x e. A B e. V -> ( x e. A |-> B ) Fn A )