Step |
Hyp |
Ref |
Expression |
1 |
|
fnmptfvd.m |
|- ( ph -> M Fn A ) |
2 |
|
fnmptfvd.s |
|- ( i = a -> D = C ) |
3 |
|
fnmptfvd.d |
|- ( ( ph /\ i e. A ) -> D e. U ) |
4 |
|
fnmptfvd.c |
|- ( ( ph /\ a e. A ) -> C e. V ) |
5 |
4
|
ralrimiva |
|- ( ph -> A. a e. A C e. V ) |
6 |
|
eqid |
|- ( a e. A |-> C ) = ( a e. A |-> C ) |
7 |
6
|
fnmpt |
|- ( A. a e. A C e. V -> ( a e. A |-> C ) Fn A ) |
8 |
5 7
|
syl |
|- ( ph -> ( a e. A |-> C ) Fn A ) |
9 |
|
eqfnfv |
|- ( ( M Fn A /\ ( a e. A |-> C ) Fn A ) -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) ) ) |
10 |
1 8 9
|
syl2anc |
|- ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) ) ) |
11 |
2
|
cbvmptv |
|- ( i e. A |-> D ) = ( a e. A |-> C ) |
12 |
11
|
eqcomi |
|- ( a e. A |-> C ) = ( i e. A |-> D ) |
13 |
12
|
a1i |
|- ( ph -> ( a e. A |-> C ) = ( i e. A |-> D ) ) |
14 |
13
|
fveq1d |
|- ( ph -> ( ( a e. A |-> C ) ` i ) = ( ( i e. A |-> D ) ` i ) ) |
15 |
14
|
eqeq2d |
|- ( ph -> ( ( M ` i ) = ( ( a e. A |-> C ) ` i ) <-> ( M ` i ) = ( ( i e. A |-> D ) ` i ) ) ) |
16 |
15
|
ralbidv |
|- ( ph -> ( A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) <-> A. i e. A ( M ` i ) = ( ( i e. A |-> D ) ` i ) ) ) |
17 |
|
simpr |
|- ( ( ph /\ i e. A ) -> i e. A ) |
18 |
|
eqid |
|- ( i e. A |-> D ) = ( i e. A |-> D ) |
19 |
18
|
fvmpt2 |
|- ( ( i e. A /\ D e. U ) -> ( ( i e. A |-> D ) ` i ) = D ) |
20 |
17 3 19
|
syl2anc |
|- ( ( ph /\ i e. A ) -> ( ( i e. A |-> D ) ` i ) = D ) |
21 |
20
|
eqeq2d |
|- ( ( ph /\ i e. A ) -> ( ( M ` i ) = ( ( i e. A |-> D ) ` i ) <-> ( M ` i ) = D ) ) |
22 |
21
|
ralbidva |
|- ( ph -> ( A. i e. A ( M ` i ) = ( ( i e. A |-> D ) ` i ) <-> A. i e. A ( M ` i ) = D ) ) |
23 |
10 16 22
|
3bitrd |
|- ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = D ) ) |