| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnmptfvd.m |  |-  ( ph -> M Fn A ) | 
						
							| 2 |  | fnmptfvd.s |  |-  ( i = a -> D = C ) | 
						
							| 3 |  | fnmptfvd.d |  |-  ( ( ph /\ i e. A ) -> D e. U ) | 
						
							| 4 |  | fnmptfvd.c |  |-  ( ( ph /\ a e. A ) -> C e. V ) | 
						
							| 5 | 4 | ralrimiva |  |-  ( ph -> A. a e. A C e. V ) | 
						
							| 6 |  | eqid |  |-  ( a e. A |-> C ) = ( a e. A |-> C ) | 
						
							| 7 | 6 | fnmpt |  |-  ( A. a e. A C e. V -> ( a e. A |-> C ) Fn A ) | 
						
							| 8 | 5 7 | syl |  |-  ( ph -> ( a e. A |-> C ) Fn A ) | 
						
							| 9 |  | eqfnfv |  |-  ( ( M Fn A /\ ( a e. A |-> C ) Fn A ) -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) ) ) | 
						
							| 10 | 1 8 9 | syl2anc |  |-  ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) ) ) | 
						
							| 11 | 2 | cbvmptv |  |-  ( i e. A |-> D ) = ( a e. A |-> C ) | 
						
							| 12 | 11 | eqcomi |  |-  ( a e. A |-> C ) = ( i e. A |-> D ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( a e. A |-> C ) = ( i e. A |-> D ) ) | 
						
							| 14 | 13 | fveq1d |  |-  ( ph -> ( ( a e. A |-> C ) ` i ) = ( ( i e. A |-> D ) ` i ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ph -> ( ( M ` i ) = ( ( a e. A |-> C ) ` i ) <-> ( M ` i ) = ( ( i e. A |-> D ) ` i ) ) ) | 
						
							| 16 | 15 | ralbidv |  |-  ( ph -> ( A. i e. A ( M ` i ) = ( ( a e. A |-> C ) ` i ) <-> A. i e. A ( M ` i ) = ( ( i e. A |-> D ) ` i ) ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ i e. A ) -> i e. A ) | 
						
							| 18 |  | eqid |  |-  ( i e. A |-> D ) = ( i e. A |-> D ) | 
						
							| 19 | 18 | fvmpt2 |  |-  ( ( i e. A /\ D e. U ) -> ( ( i e. A |-> D ) ` i ) = D ) | 
						
							| 20 | 17 3 19 | syl2anc |  |-  ( ( ph /\ i e. A ) -> ( ( i e. A |-> D ) ` i ) = D ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( ( ph /\ i e. A ) -> ( ( M ` i ) = ( ( i e. A |-> D ) ` i ) <-> ( M ` i ) = D ) ) | 
						
							| 22 | 21 | ralbidva |  |-  ( ph -> ( A. i e. A ( M ` i ) = ( ( i e. A |-> D ) ` i ) <-> A. i e. A ( M ` i ) = D ) ) | 
						
							| 23 | 10 16 22 | 3bitrd |  |-  ( ph -> ( M = ( a e. A |-> C ) <-> A. i e. A ( M ` i ) = D ) ) |