Metamath Proof Explorer


Theorem fnmre

Description: The Moore collection generator is a well-behaved function. Analogue for Moore collections of fntopon for topologies. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion fnmre
|- Moore Fn _V

Proof

Step Hyp Ref Expression
1 vpwex
 |-  ~P x e. _V
2 1 pwex
 |-  ~P ~P x e. _V
3 2 rabex
 |-  { c e. ~P ~P x | ( x e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } e. _V
4 df-mre
 |-  Moore = ( x e. _V |-> { c e. ~P ~P x | ( x e. c /\ A. s e. ~P c ( s =/= (/) -> |^| s e. c ) ) } )
5 3 4 fnmpti
 |-  Moore Fn _V