Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnoe | |- ^o Fn ( On X. On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-oexp | |- ^o = ( x e. On , y e. On |-> if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) ) | |
| 2 | 1on | |- 1o e. On | |
| 3 | difexg | |- ( 1o e. On -> ( 1o \ y ) e. _V ) | |
| 4 | 2 3 | ax-mp | |- ( 1o \ y ) e. _V | 
| 5 | fvex | |- ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) e. _V | |
| 6 | 4 5 | ifex | |- if ( x = (/) , ( 1o \ y ) , ( rec ( ( z e. _V |-> ( z .o x ) ) , 1o ) ` y ) ) e. _V | 
| 7 | 1 6 | fnmpoi | |- ^o Fn ( On X. On ) |