Description: Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnopfvb | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> <. B , C >. e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnbrfvb | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> B F C ) ) |
|
| 2 | df-br | |- ( B F C <-> <. B , C >. e. F ) |
|
| 3 | 1 2 | bitrdi | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> <. B , C >. e. F ) ) |