Description: Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | fnopfvb | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> <. B , C >. e. F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnbrfvb | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> B F C ) ) |
|
2 | df-br | |- ( B F C <-> <. B , C >. e. F ) |
|
3 | 1 2 | bitrdi | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> <. B , C >. e. F ) ) |