| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffn5 |
|- ( F Fn ( A X. B ) <-> F = ( z e. ( A X. B ) |-> ( F ` z ) ) ) |
| 2 |
|
fveq2 |
|- ( z = <. x , y >. -> ( F ` z ) = ( F ` <. x , y >. ) ) |
| 3 |
|
df-ov |
|- ( x F y ) = ( F ` <. x , y >. ) |
| 4 |
2 3
|
eqtr4di |
|- ( z = <. x , y >. -> ( F ` z ) = ( x F y ) ) |
| 5 |
4
|
mpompt |
|- ( z e. ( A X. B ) |-> ( F ` z ) ) = ( x e. A , y e. B |-> ( x F y ) ) |
| 6 |
5
|
eqeq2i |
|- ( F = ( z e. ( A X. B ) |-> ( F ` z ) ) <-> F = ( x e. A , y e. B |-> ( x F y ) ) ) |
| 7 |
1 6
|
bitri |
|- ( F Fn ( A X. B ) <-> F = ( x e. A , y e. B |-> ( x F y ) ) ) |