Step |
Hyp |
Ref |
Expression |
1 |
|
preq1 |
|- ( a = A -> { a , b } = { A , b } ) |
2 |
1
|
fneq2d |
|- ( a = A -> ( F Fn { a , b } <-> F Fn { A , b } ) ) |
3 |
|
id |
|- ( a = A -> a = A ) |
4 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
5 |
3 4
|
opeq12d |
|- ( a = A -> <. a , ( F ` a ) >. = <. A , ( F ` A ) >. ) |
6 |
5
|
preq1d |
|- ( a = A -> { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) |
7 |
6
|
eqeq2d |
|- ( a = A -> ( F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) ) |
8 |
2 7
|
bibi12d |
|- ( a = A -> ( ( F Fn { a , b } <-> F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } ) <-> ( F Fn { A , b } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) ) ) |
9 |
|
preq2 |
|- ( b = B -> { A , b } = { A , B } ) |
10 |
9
|
fneq2d |
|- ( b = B -> ( F Fn { A , b } <-> F Fn { A , B } ) ) |
11 |
|
id |
|- ( b = B -> b = B ) |
12 |
|
fveq2 |
|- ( b = B -> ( F ` b ) = ( F ` B ) ) |
13 |
11 12
|
opeq12d |
|- ( b = B -> <. b , ( F ` b ) >. = <. B , ( F ` B ) >. ) |
14 |
13
|
preq2d |
|- ( b = B -> { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
15 |
14
|
eqeq2d |
|- ( b = B -> ( F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
16 |
10 15
|
bibi12d |
|- ( b = B -> ( ( F Fn { A , b } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) <-> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) ) |
17 |
|
vex |
|- a e. _V |
18 |
|
vex |
|- b e. _V |
19 |
17 18
|
fnprb |
|- ( F Fn { a , b } <-> F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } ) |
20 |
8 16 19
|
vtocl2g |
|- ( ( A e. V /\ B e. W ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |