| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preq1 |  |-  ( a = A -> { a , b } = { A , b } ) | 
						
							| 2 | 1 | fneq2d |  |-  ( a = A -> ( F Fn { a , b } <-> F Fn { A , b } ) ) | 
						
							| 3 |  | id |  |-  ( a = A -> a = A ) | 
						
							| 4 |  | fveq2 |  |-  ( a = A -> ( F ` a ) = ( F ` A ) ) | 
						
							| 5 | 3 4 | opeq12d |  |-  ( a = A -> <. a , ( F ` a ) >. = <. A , ( F ` A ) >. ) | 
						
							| 6 | 5 | preq1d |  |-  ( a = A -> { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( a = A -> ( F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) ) | 
						
							| 8 | 2 7 | bibi12d |  |-  ( a = A -> ( ( F Fn { a , b } <-> F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } ) <-> ( F Fn { A , b } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) ) ) | 
						
							| 9 |  | preq2 |  |-  ( b = B -> { A , b } = { A , B } ) | 
						
							| 10 | 9 | fneq2d |  |-  ( b = B -> ( F Fn { A , b } <-> F Fn { A , B } ) ) | 
						
							| 11 |  | id |  |-  ( b = B -> b = B ) | 
						
							| 12 |  | fveq2 |  |-  ( b = B -> ( F ` b ) = ( F ` B ) ) | 
						
							| 13 | 11 12 | opeq12d |  |-  ( b = B -> <. b , ( F ` b ) >. = <. B , ( F ` B ) >. ) | 
						
							| 14 | 13 | preq2d |  |-  ( b = B -> { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( b = B -> ( F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) | 
						
							| 16 | 10 15 | bibi12d |  |-  ( b = B -> ( ( F Fn { A , b } <-> F = { <. A , ( F ` A ) >. , <. b , ( F ` b ) >. } ) <-> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) ) | 
						
							| 17 |  | vex |  |-  a e. _V | 
						
							| 18 |  | vex |  |-  b e. _V | 
						
							| 19 | 17 18 | fnprb |  |-  ( F Fn { a , b } <-> F = { <. a , ( F ` a ) >. , <. b , ( F ` b ) >. } ) | 
						
							| 20 | 8 16 19 | vtocl2g |  |-  ( ( A e. V /\ B e. W ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |