| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnpr2o |
|- ( ( A e. _V /\ B e. _V ) -> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |
| 2 |
|
0ex |
|- (/) e. _V |
| 3 |
2
|
prid1 |
|- (/) e. { (/) , 1o } |
| 4 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 5 |
3 4
|
eleqtrri |
|- (/) e. 2o |
| 6 |
|
fndm |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> dom { <. (/) , A >. , <. 1o , B >. } = 2o ) |
| 7 |
5 6
|
eleqtrrid |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> (/) e. dom { <. (/) , A >. , <. 1o , B >. } ) |
| 8 |
2
|
eldm2 |
|- ( (/) e. dom { <. (/) , A >. , <. 1o , B >. } <-> E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 9 |
7 8
|
sylib |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 10 |
|
1n0 |
|- 1o =/= (/) |
| 11 |
10
|
nesymi |
|- -. (/) = 1o |
| 12 |
|
vex |
|- k e. _V |
| 13 |
2 12
|
opth1 |
|- ( <. (/) , k >. = <. 1o , B >. -> (/) = 1o ) |
| 14 |
11 13
|
mto |
|- -. <. (/) , k >. = <. 1o , B >. |
| 15 |
|
elpri |
|- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. (/) , k >. = <. (/) , A >. \/ <. (/) , k >. = <. 1o , B >. ) ) |
| 16 |
|
orel2 |
|- ( -. <. (/) , k >. = <. 1o , B >. -> ( ( <. (/) , k >. = <. (/) , A >. \/ <. (/) , k >. = <. 1o , B >. ) -> <. (/) , k >. = <. (/) , A >. ) ) |
| 17 |
14 15 16
|
mpsyl |
|- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> <. (/) , k >. = <. (/) , A >. ) |
| 18 |
2 12
|
opth |
|- ( <. (/) , k >. = <. (/) , A >. <-> ( (/) = (/) /\ k = A ) ) |
| 19 |
17 18
|
sylib |
|- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( (/) = (/) /\ k = A ) ) |
| 20 |
19
|
simprd |
|- ( <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> k = A ) |
| 21 |
20
|
eximi |
|- ( E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> E. k k = A ) |
| 22 |
|
isset |
|- ( A e. _V <-> E. k k = A ) |
| 23 |
21 22
|
sylibr |
|- ( E. k <. (/) , k >. e. { <. (/) , A >. , <. 1o , B >. } -> A e. _V ) |
| 24 |
9 23
|
syl |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> A e. _V ) |
| 25 |
|
1oex |
|- 1o e. _V |
| 26 |
25
|
prid2 |
|- 1o e. { (/) , 1o } |
| 27 |
26 4
|
eleqtrri |
|- 1o e. 2o |
| 28 |
27 6
|
eleqtrrid |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> 1o e. dom { <. (/) , A >. , <. 1o , B >. } ) |
| 29 |
25
|
eldm2 |
|- ( 1o e. dom { <. (/) , A >. , <. 1o , B >. } <-> E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 30 |
28 29
|
sylib |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } ) |
| 31 |
10
|
neii |
|- -. 1o = (/) |
| 32 |
25 12
|
opth1 |
|- ( <. 1o , k >. = <. (/) , A >. -> 1o = (/) ) |
| 33 |
31 32
|
mto |
|- -. <. 1o , k >. = <. (/) , A >. |
| 34 |
|
elpri |
|- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. 1o , k >. = <. (/) , A >. \/ <. 1o , k >. = <. 1o , B >. ) ) |
| 35 |
34
|
orcomd |
|- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( <. 1o , k >. = <. 1o , B >. \/ <. 1o , k >. = <. (/) , A >. ) ) |
| 36 |
|
orel2 |
|- ( -. <. 1o , k >. = <. (/) , A >. -> ( ( <. 1o , k >. = <. 1o , B >. \/ <. 1o , k >. = <. (/) , A >. ) -> <. 1o , k >. = <. 1o , B >. ) ) |
| 37 |
33 35 36
|
mpsyl |
|- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> <. 1o , k >. = <. 1o , B >. ) |
| 38 |
25 12
|
opth |
|- ( <. 1o , k >. = <. 1o , B >. <-> ( 1o = 1o /\ k = B ) ) |
| 39 |
37 38
|
sylib |
|- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> ( 1o = 1o /\ k = B ) ) |
| 40 |
39
|
simprd |
|- ( <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> k = B ) |
| 41 |
40
|
eximi |
|- ( E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> E. k k = B ) |
| 42 |
|
isset |
|- ( B e. _V <-> E. k k = B ) |
| 43 |
41 42
|
sylibr |
|- ( E. k <. 1o , k >. e. { <. (/) , A >. , <. 1o , B >. } -> B e. _V ) |
| 44 |
30 43
|
syl |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> B e. _V ) |
| 45 |
24 44
|
jca |
|- ( { <. (/) , A >. , <. 1o , B >. } Fn 2o -> ( A e. _V /\ B e. _V ) ) |
| 46 |
1 45
|
impbii |
|- ( ( A e. _V /\ B e. _V ) <-> { <. (/) , A >. , <. 1o , B >. } Fn 2o ) |