Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fnprg | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> { <. A , C >. , <. B , D >. } Fn { A , B } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funprg | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> Fun { <. A , C >. , <. B , D >. } ) |
|
2 | dmpropg | |- ( ( C e. X /\ D e. Y ) -> dom { <. A , C >. , <. B , D >. } = { A , B } ) |
|
3 | 2 | 3ad2ant2 | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> dom { <. A , C >. , <. B , D >. } = { A , B } ) |
4 | df-fn | |- ( { <. A , C >. , <. B , D >. } Fn { A , B } <-> ( Fun { <. A , C >. , <. B , D >. } /\ dom { <. A , C >. , <. B , D >. } = { A , B } ) ) |
|
5 | 1 3 4 | sylanbrc | |- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> { <. A , C >. , <. B , D >. } Fn { A , B } ) |