Metamath Proof Explorer


Theorem fnprg

Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion fnprg
|- ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> { <. A , C >. , <. B , D >. } Fn { A , B } )

Proof

Step Hyp Ref Expression
1 funprg
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> Fun { <. A , C >. , <. B , D >. } )
2 dmpropg
 |-  ( ( C e. X /\ D e. Y ) -> dom { <. A , C >. , <. B , D >. } = { A , B } )
3 2 3ad2ant2
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> dom { <. A , C >. , <. B , D >. } = { A , B } )
4 df-fn
 |-  ( { <. A , C >. , <. B , D >. } Fn { A , B } <-> ( Fun { <. A , C >. , <. B , D >. } /\ dom { <. A , C >. , <. B , D >. } = { A , B } ) )
5 1 3 4 sylanbrc
 |-  ( ( ( A e. V /\ B e. W ) /\ ( C e. X /\ D e. Y ) /\ A =/= B ) -> { <. A , C >. , <. B , D >. } Fn { A , B } )