| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( F |` B ) |
| 2 |
|
reldm0 |
|- ( Rel ( F |` B ) -> ( ( F |` B ) = (/) <-> dom ( F |` B ) = (/) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ( F |` B ) = (/) <-> dom ( F |` B ) = (/) ) |
| 4 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
| 5 |
|
incom |
|- ( B i^i dom F ) = ( dom F i^i B ) |
| 6 |
4 5
|
eqtri |
|- dom ( F |` B ) = ( dom F i^i B ) |
| 7 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 8 |
7
|
ineq1d |
|- ( F Fn A -> ( dom F i^i B ) = ( A i^i B ) ) |
| 9 |
6 8
|
eqtrid |
|- ( F Fn A -> dom ( F |` B ) = ( A i^i B ) ) |
| 10 |
9
|
eqeq1d |
|- ( F Fn A -> ( dom ( F |` B ) = (/) <-> ( A i^i B ) = (/) ) ) |
| 11 |
3 10
|
bitr2id |
|- ( F Fn A -> ( ( A i^i B ) = (/) <-> ( F |` B ) = (/) ) ) |