Step |
Hyp |
Ref |
Expression |
1 |
|
fnssres |
|- ( ( F Fn A /\ X C_ A ) -> ( F |` X ) Fn X ) |
2 |
1
|
3adant2 |
|- ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( F |` X ) Fn X ) |
3 |
|
fnssres |
|- ( ( G Fn A /\ X C_ A ) -> ( G |` X ) Fn X ) |
4 |
3
|
3adant1 |
|- ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( G |` X ) Fn X ) |
5 |
|
fneqeql |
|- ( ( ( F |` X ) Fn X /\ ( G |` X ) Fn X ) -> ( ( F |` X ) = ( G |` X ) <-> dom ( ( F |` X ) i^i ( G |` X ) ) = X ) ) |
6 |
2 4 5
|
syl2anc |
|- ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( ( F |` X ) = ( G |` X ) <-> dom ( ( F |` X ) i^i ( G |` X ) ) = X ) ) |
7 |
|
resindir |
|- ( ( F i^i G ) |` X ) = ( ( F |` X ) i^i ( G |` X ) ) |
8 |
7
|
dmeqi |
|- dom ( ( F i^i G ) |` X ) = dom ( ( F |` X ) i^i ( G |` X ) ) |
9 |
|
dmres |
|- dom ( ( F i^i G ) |` X ) = ( X i^i dom ( F i^i G ) ) |
10 |
8 9
|
eqtr3i |
|- dom ( ( F |` X ) i^i ( G |` X ) ) = ( X i^i dom ( F i^i G ) ) |
11 |
10
|
eqeq1i |
|- ( dom ( ( F |` X ) i^i ( G |` X ) ) = X <-> ( X i^i dom ( F i^i G ) ) = X ) |
12 |
|
df-ss |
|- ( X C_ dom ( F i^i G ) <-> ( X i^i dom ( F i^i G ) ) = X ) |
13 |
11 12
|
bitr4i |
|- ( dom ( ( F |` X ) i^i ( G |` X ) ) = X <-> X C_ dom ( F i^i G ) ) |
14 |
6 13
|
bitrdi |
|- ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( ( F |` X ) = ( G |` X ) <-> X C_ dom ( F i^i G ) ) ) |