| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnssres |  |-  ( ( F Fn A /\ X C_ A ) -> ( F |` X ) Fn X ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( F |` X ) Fn X ) | 
						
							| 3 |  | fnssres |  |-  ( ( G Fn A /\ X C_ A ) -> ( G |` X ) Fn X ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( G |` X ) Fn X ) | 
						
							| 5 |  | fneqeql |  |-  ( ( ( F |` X ) Fn X /\ ( G |` X ) Fn X ) -> ( ( F |` X ) = ( G |` X ) <-> dom ( ( F |` X ) i^i ( G |` X ) ) = X ) ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( ( F |` X ) = ( G |` X ) <-> dom ( ( F |` X ) i^i ( G |` X ) ) = X ) ) | 
						
							| 7 |  | resindir |  |-  ( ( F i^i G ) |` X ) = ( ( F |` X ) i^i ( G |` X ) ) | 
						
							| 8 | 7 | dmeqi |  |-  dom ( ( F i^i G ) |` X ) = dom ( ( F |` X ) i^i ( G |` X ) ) | 
						
							| 9 |  | dmres |  |-  dom ( ( F i^i G ) |` X ) = ( X i^i dom ( F i^i G ) ) | 
						
							| 10 | 8 9 | eqtr3i |  |-  dom ( ( F |` X ) i^i ( G |` X ) ) = ( X i^i dom ( F i^i G ) ) | 
						
							| 11 | 10 | eqeq1i |  |-  ( dom ( ( F |` X ) i^i ( G |` X ) ) = X <-> ( X i^i dom ( F i^i G ) ) = X ) | 
						
							| 12 |  | dfss2 |  |-  ( X C_ dom ( F i^i G ) <-> ( X i^i dom ( F i^i G ) ) = X ) | 
						
							| 13 | 11 12 | bitr4i |  |-  ( dom ( ( F |` X ) i^i ( G |` X ) ) = X <-> X C_ dom ( F i^i G ) ) | 
						
							| 14 | 6 13 | bitrdi |  |-  ( ( F Fn A /\ G Fn A /\ X C_ A ) -> ( ( F |` X ) = ( G |` X ) <-> X C_ dom ( F i^i G ) ) ) |