Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( x = B -> { x } = { B } ) |
2 |
1
|
reseq2d |
|- ( x = B -> ( F |` { x } ) = ( F |` { B } ) ) |
3 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
4 |
|
opeq12 |
|- ( ( x = B /\ ( F ` x ) = ( F ` B ) ) -> <. x , ( F ` x ) >. = <. B , ( F ` B ) >. ) |
5 |
3 4
|
mpdan |
|- ( x = B -> <. x , ( F ` x ) >. = <. B , ( F ` B ) >. ) |
6 |
5
|
sneqd |
|- ( x = B -> { <. x , ( F ` x ) >. } = { <. B , ( F ` B ) >. } ) |
7 |
2 6
|
eqeq12d |
|- ( x = B -> ( ( F |` { x } ) = { <. x , ( F ` x ) >. } <-> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) |
8 |
7
|
imbi2d |
|- ( x = B -> ( ( F Fn A -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) <-> ( F Fn A -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) ) |
9 |
|
vex |
|- x e. _V |
10 |
9
|
snss |
|- ( x e. A <-> { x } C_ A ) |
11 |
|
fnssres |
|- ( ( F Fn A /\ { x } C_ A ) -> ( F |` { x } ) Fn { x } ) |
12 |
10 11
|
sylan2b |
|- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) Fn { x } ) |
13 |
|
dffn2 |
|- ( ( F |` { x } ) Fn { x } <-> ( F |` { x } ) : { x } --> _V ) |
14 |
9
|
fsn2 |
|- ( ( F |` { x } ) : { x } --> _V <-> ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) |
15 |
|
fvex |
|- ( ( F |` { x } ) ` x ) e. _V |
16 |
15
|
biantrur |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) |
17 |
|
vsnid |
|- x e. { x } |
18 |
|
fvres |
|- ( x e. { x } -> ( ( F |` { x } ) ` x ) = ( F ` x ) ) |
19 |
17 18
|
ax-mp |
|- ( ( F |` { x } ) ` x ) = ( F ` x ) |
20 |
19
|
opeq2i |
|- <. x , ( ( F |` { x } ) ` x ) >. = <. x , ( F ` x ) >. |
21 |
20
|
sneqi |
|- { <. x , ( ( F |` { x } ) ` x ) >. } = { <. x , ( F ` x ) >. } |
22 |
21
|
eqeq2i |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
23 |
16 22
|
bitr3i |
|- ( ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
24 |
13 14 23
|
3bitri |
|- ( ( F |` { x } ) Fn { x } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
25 |
12 24
|
sylib |
|- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
26 |
25
|
expcom |
|- ( x e. A -> ( F Fn A -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) ) |
27 |
8 26
|
vtoclga |
|- ( B e. A -> ( F Fn A -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) |
28 |
27
|
impcom |
|- ( ( F Fn A /\ B e. A ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |