| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sneq |
|- ( x = B -> { x } = { B } ) |
| 2 |
1
|
reseq2d |
|- ( x = B -> ( F |` { x } ) = ( F |` { B } ) ) |
| 3 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 4 |
|
opeq12 |
|- ( ( x = B /\ ( F ` x ) = ( F ` B ) ) -> <. x , ( F ` x ) >. = <. B , ( F ` B ) >. ) |
| 5 |
3 4
|
mpdan |
|- ( x = B -> <. x , ( F ` x ) >. = <. B , ( F ` B ) >. ) |
| 6 |
5
|
sneqd |
|- ( x = B -> { <. x , ( F ` x ) >. } = { <. B , ( F ` B ) >. } ) |
| 7 |
2 6
|
eqeq12d |
|- ( x = B -> ( ( F |` { x } ) = { <. x , ( F ` x ) >. } <-> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) |
| 8 |
7
|
imbi2d |
|- ( x = B -> ( ( F Fn A -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) <-> ( F Fn A -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) ) |
| 9 |
|
vex |
|- x e. _V |
| 10 |
9
|
snss |
|- ( x e. A <-> { x } C_ A ) |
| 11 |
|
fnssres |
|- ( ( F Fn A /\ { x } C_ A ) -> ( F |` { x } ) Fn { x } ) |
| 12 |
10 11
|
sylan2b |
|- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) Fn { x } ) |
| 13 |
|
dffn2 |
|- ( ( F |` { x } ) Fn { x } <-> ( F |` { x } ) : { x } --> _V ) |
| 14 |
9
|
fsn2 |
|- ( ( F |` { x } ) : { x } --> _V <-> ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) |
| 15 |
|
fvex |
|- ( ( F |` { x } ) ` x ) e. _V |
| 16 |
15
|
biantrur |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) |
| 17 |
|
vsnid |
|- x e. { x } |
| 18 |
|
fvres |
|- ( x e. { x } -> ( ( F |` { x } ) ` x ) = ( F ` x ) ) |
| 19 |
17 18
|
ax-mp |
|- ( ( F |` { x } ) ` x ) = ( F ` x ) |
| 20 |
19
|
opeq2i |
|- <. x , ( ( F |` { x } ) ` x ) >. = <. x , ( F ` x ) >. |
| 21 |
20
|
sneqi |
|- { <. x , ( ( F |` { x } ) ` x ) >. } = { <. x , ( F ` x ) >. } |
| 22 |
21
|
eqeq2i |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 23 |
16 22
|
bitr3i |
|- ( ( ( ( F |` { x } ) ` x ) e. _V /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 24 |
13 14 23
|
3bitri |
|- ( ( F |` { x } ) Fn { x } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 25 |
12 24
|
sylib |
|- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
| 26 |
25
|
expcom |
|- ( x e. A -> ( F Fn A -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) ) |
| 27 |
8 26
|
vtoclga |
|- ( B e. A -> ( F Fn A -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) ) |
| 28 |
27
|
impcom |
|- ( ( F Fn A /\ B e. A ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |