Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005) (Proof shortened by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fnrnfv | |- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn5 | |- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |
|
2 | rneq | |- ( F = ( x e. A |-> ( F ` x ) ) -> ran F = ran ( x e. A |-> ( F ` x ) ) ) |
|
3 | 1 2 | sylbi | |- ( F Fn A -> ran F = ran ( x e. A |-> ( F ` x ) ) ) |
4 | eqid | |- ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( F ` x ) ) |
|
5 | 4 | rnmpt | |- ran ( x e. A |-> ( F ` x ) ) = { y | E. x e. A y = ( F ` x ) } |
6 | 3 5 | eqtrdi | |- ( F Fn A -> ran F = { y | E. x e. A y = ( F ` x ) } ) |