Metamath Proof Explorer


Theorem fnsn

Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses fnsn.1
|- A e. _V
fnsn.2
|- B e. _V
Assertion fnsn
|- { <. A , B >. } Fn { A }

Proof

Step Hyp Ref Expression
1 fnsn.1
 |-  A e. _V
2 fnsn.2
 |-  B e. _V
3 fnsng
 |-  ( ( A e. _V /\ B e. _V ) -> { <. A , B >. } Fn { A } )
4 1 2 3 mp2an
 |-  { <. A , B >. } Fn { A }