| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnsnr |  |-  ( F Fn { A } -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. V /\ F Fn { A } ) -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) | 
						
							| 3 |  | fnfun |  |-  ( F Fn { A } -> Fun F ) | 
						
							| 4 |  | snidg |  |-  ( A e. V -> A e. { A } ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. V /\ F Fn { A } ) -> A e. { A } ) | 
						
							| 6 |  | fndm |  |-  ( F Fn { A } -> dom F = { A } ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. V /\ F Fn { A } ) -> dom F = { A } ) | 
						
							| 8 | 5 7 | eleqtrrd |  |-  ( ( A e. V /\ F Fn { A } ) -> A e. dom F ) | 
						
							| 9 |  | funfvop |  |-  ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) | 
						
							| 10 | 3 8 9 | syl2an2 |  |-  ( ( A e. V /\ F Fn { A } ) -> <. A , ( F ` A ) >. e. F ) | 
						
							| 11 |  | eleq1 |  |-  ( x = <. A , ( F ` A ) >. -> ( x e. F <-> <. A , ( F ` A ) >. e. F ) ) | 
						
							| 12 | 10 11 | syl5ibrcom |  |-  ( ( A e. V /\ F Fn { A } ) -> ( x = <. A , ( F ` A ) >. -> x e. F ) ) | 
						
							| 13 | 2 12 | impbid |  |-  ( ( A e. V /\ F Fn { A } ) -> ( x e. F <-> x = <. A , ( F ` A ) >. ) ) | 
						
							| 14 |  | velsn |  |-  ( x e. { <. A , ( F ` A ) >. } <-> x = <. A , ( F ` A ) >. ) | 
						
							| 15 | 13 14 | bitr4di |  |-  ( ( A e. V /\ F Fn { A } ) -> ( x e. F <-> x e. { <. A , ( F ` A ) >. } ) ) | 
						
							| 16 | 15 | eqrdv |  |-  ( ( A e. V /\ F Fn { A } ) -> F = { <. A , ( F ` A ) >. } ) | 
						
							| 17 | 16 | ex |  |-  ( A e. V -> ( F Fn { A } -> F = { <. A , ( F ` A ) >. } ) ) | 
						
							| 18 |  | fvex |  |-  ( F ` A ) e. _V | 
						
							| 19 |  | fnsng |  |-  ( ( A e. V /\ ( F ` A ) e. _V ) -> { <. A , ( F ` A ) >. } Fn { A } ) | 
						
							| 20 | 18 19 | mpan2 |  |-  ( A e. V -> { <. A , ( F ` A ) >. } Fn { A } ) | 
						
							| 21 |  | fneq1 |  |-  ( F = { <. A , ( F ` A ) >. } -> ( F Fn { A } <-> { <. A , ( F ` A ) >. } Fn { A } ) ) | 
						
							| 22 | 20 21 | syl5ibrcom |  |-  ( A e. V -> ( F = { <. A , ( F ` A ) >. } -> F Fn { A } ) ) | 
						
							| 23 | 17 22 | impbid |  |-  ( A e. V -> ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) ) |