Metamath Proof Explorer


Theorem fnsnfv

Description: Singleton of function value. (Contributed by NM, 22-May-1998) (Proof shortened by Scott Fenton, 8-Aug-2024)

Ref Expression
Assertion fnsnfv
|- ( ( F Fn A /\ B e. A ) -> { ( F ` B ) } = ( F " { B } ) )

Proof

Step Hyp Ref Expression
1 imasng
 |-  ( B e. A -> ( F " { B } ) = { y | B F y } )
2 1 adantl
 |-  ( ( F Fn A /\ B e. A ) -> ( F " { B } ) = { y | B F y } )
3 velsn
 |-  ( y e. { ( F ` B ) } <-> y = ( F ` B ) )
4 eqcom
 |-  ( y = ( F ` B ) <-> ( F ` B ) = y )
5 3 4 bitri
 |-  ( y e. { ( F ` B ) } <-> ( F ` B ) = y )
6 fnbrfvb
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = y <-> B F y ) )
7 5 6 syl5rbb
 |-  ( ( F Fn A /\ B e. A ) -> ( B F y <-> y e. { ( F ` B ) } ) )
8 7 abbi1dv
 |-  ( ( F Fn A /\ B e. A ) -> { y | B F y } = { ( F ` B ) } )
9 2 8 eqtr2d
 |-  ( ( F Fn A /\ B e. A ) -> { ( F ` B ) } = ( F " { B } ) )