Metamath Proof Explorer


Theorem fnsng

Description: Functionality and domain of the singleton of an ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion fnsng
|- ( ( A e. V /\ B e. W ) -> { <. A , B >. } Fn { A } )

Proof

Step Hyp Ref Expression
1 funsng
 |-  ( ( A e. V /\ B e. W ) -> Fun { <. A , B >. } )
2 dmsnopg
 |-  ( B e. W -> dom { <. A , B >. } = { A } )
3 2 adantl
 |-  ( ( A e. V /\ B e. W ) -> dom { <. A , B >. } = { A } )
4 df-fn
 |-  ( { <. A , B >. } Fn { A } <-> ( Fun { <. A , B >. } /\ dom { <. A , B >. } = { A } ) )
5 1 3 4 sylanbrc
 |-  ( ( A e. V /\ B e. W ) -> { <. A , B >. } Fn { A } )