Step |
Hyp |
Ref |
Expression |
1 |
|
fnresdm |
|- ( F Fn { A } -> ( F |` { A } ) = F ) |
2 |
|
fnfun |
|- ( F Fn { A } -> Fun F ) |
3 |
|
funressn |
|- ( Fun F -> ( F |` { A } ) C_ { <. A , ( F ` A ) >. } ) |
4 |
2 3
|
syl |
|- ( F Fn { A } -> ( F |` { A } ) C_ { <. A , ( F ` A ) >. } ) |
5 |
1 4
|
eqsstrrd |
|- ( F Fn { A } -> F C_ { <. A , ( F ` A ) >. } ) |
6 |
5
|
sseld |
|- ( F Fn { A } -> ( B e. F -> B e. { <. A , ( F ` A ) >. } ) ) |
7 |
|
elsni |
|- ( B e. { <. A , ( F ` A ) >. } -> B = <. A , ( F ` A ) >. ) |
8 |
6 7
|
syl6 |
|- ( F Fn { A } -> ( B e. F -> B = <. A , ( F ` A ) >. ) ) |