Metamath Proof Explorer


Theorem fnssresd

Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fnssresd.1
|- ( ph -> F Fn A )
fnssresd.2
|- ( ph -> B C_ A )
Assertion fnssresd
|- ( ph -> ( F |` B ) Fn B )

Proof

Step Hyp Ref Expression
1 fnssresd.1
 |-  ( ph -> F Fn A )
2 fnssresd.2
 |-  ( ph -> B C_ A )
3 fnssres
 |-  ( ( F Fn A /\ B C_ A ) -> ( F |` B ) Fn B )
4 1 2 3 syl2anc
 |-  ( ph -> ( F |` B ) Fn B )