Step |
Hyp |
Ref |
Expression |
1 |
|
fndm |
|- ( F Fn ( A u. B ) -> dom F = ( A u. B ) ) |
2 |
1
|
rabeqdv |
|- ( F Fn ( A u. B ) -> { a e. dom F | ( F ` a ) =/= Z } = { a e. ( A u. B ) | ( F ` a ) =/= Z } ) |
3 |
2
|
3ad2ant1 |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> { a e. dom F | ( F ` a ) =/= Z } = { a e. ( A u. B ) | ( F ` a ) =/= Z } ) |
4 |
3
|
sseq1d |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. dom F | ( F ` a ) =/= Z } C_ A <-> { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A ) ) |
5 |
|
unss |
|- ( ( { a e. A | ( F ` a ) =/= Z } C_ A /\ { a e. B | ( F ` a ) =/= Z } C_ A ) <-> ( { a e. A | ( F ` a ) =/= Z } u. { a e. B | ( F ` a ) =/= Z } ) C_ A ) |
6 |
|
ssrab2 |
|- { a e. A | ( F ` a ) =/= Z } C_ A |
7 |
6
|
biantrur |
|- ( { a e. B | ( F ` a ) =/= Z } C_ A <-> ( { a e. A | ( F ` a ) =/= Z } C_ A /\ { a e. B | ( F ` a ) =/= Z } C_ A ) ) |
8 |
|
rabun2 |
|- { a e. ( A u. B ) | ( F ` a ) =/= Z } = ( { a e. A | ( F ` a ) =/= Z } u. { a e. B | ( F ` a ) =/= Z } ) |
9 |
8
|
sseq1i |
|- ( { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A <-> ( { a e. A | ( F ` a ) =/= Z } u. { a e. B | ( F ` a ) =/= Z } ) C_ A ) |
10 |
5 7 9
|
3bitr4ri |
|- ( { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A <-> { a e. B | ( F ` a ) =/= Z } C_ A ) |
11 |
|
rabss |
|- ( { a e. B | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F ` a ) =/= Z -> a e. A ) ) |
12 |
|
fvres |
|- ( a e. B -> ( ( F |` B ) ` a ) = ( F ` a ) ) |
13 |
12
|
adantl |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( F |` B ) ` a ) = ( F ` a ) ) |
14 |
|
simp2r |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> Z e. V ) |
15 |
|
fvconst2g |
|- ( ( Z e. V /\ a e. B ) -> ( ( B X. { Z } ) ` a ) = Z ) |
16 |
14 15
|
sylan |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( B X. { Z } ) ` a ) = Z ) |
17 |
13 16
|
eqeq12d |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) <-> ( F ` a ) = Z ) ) |
18 |
|
nne |
|- ( -. ( F ` a ) =/= Z <-> ( F ` a ) = Z ) |
19 |
18
|
a1i |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( -. ( F ` a ) =/= Z <-> ( F ` a ) = Z ) ) |
20 |
|
id |
|- ( a e. B -> a e. B ) |
21 |
|
simp3 |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( A i^i B ) = (/) ) |
22 |
|
minel |
|- ( ( a e. B /\ ( A i^i B ) = (/) ) -> -. a e. A ) |
23 |
20 21 22
|
syl2anr |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> -. a e. A ) |
24 |
|
mtt |
|- ( -. a e. A -> ( -. ( F ` a ) =/= Z <-> ( ( F ` a ) =/= Z -> a e. A ) ) ) |
25 |
23 24
|
syl |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( -. ( F ` a ) =/= Z <-> ( ( F ` a ) =/= Z -> a e. A ) ) ) |
26 |
17 19 25
|
3bitr2rd |
|- ( ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) /\ a e. B ) -> ( ( ( F ` a ) =/= Z -> a e. A ) <-> ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
27 |
26
|
ralbidva |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( A. a e. B ( ( F ` a ) =/= Z -> a e. A ) <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
28 |
11 27
|
bitrid |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. B | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
29 |
10 28
|
bitrid |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. ( A u. B ) | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
30 |
4 29
|
bitrd |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( { a e. dom F | ( F ` a ) =/= Z } C_ A <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
31 |
|
fnfun |
|- ( F Fn ( A u. B ) -> Fun F ) |
32 |
31
|
3anim1i |
|- ( ( F Fn ( A u. B ) /\ F e. W /\ Z e. V ) -> ( Fun F /\ F e. W /\ Z e. V ) ) |
33 |
32
|
3expb |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) ) -> ( Fun F /\ F e. W /\ Z e. V ) ) |
34 |
|
suppval1 |
|- ( ( Fun F /\ F e. W /\ Z e. V ) -> ( F supp Z ) = { a e. dom F | ( F ` a ) =/= Z } ) |
35 |
33 34
|
syl |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) ) -> ( F supp Z ) = { a e. dom F | ( F ` a ) =/= Z } ) |
36 |
35
|
3adant3 |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( F supp Z ) = { a e. dom F | ( F ` a ) =/= Z } ) |
37 |
36
|
sseq1d |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F supp Z ) C_ A <-> { a e. dom F | ( F ` a ) =/= Z } C_ A ) ) |
38 |
|
simp1 |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> F Fn ( A u. B ) ) |
39 |
|
ssun2 |
|- B C_ ( A u. B ) |
40 |
39
|
a1i |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> B C_ ( A u. B ) ) |
41 |
|
fnssres |
|- ( ( F Fn ( A u. B ) /\ B C_ ( A u. B ) ) -> ( F |` B ) Fn B ) |
42 |
38 40 41
|
syl2anc |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( F |` B ) Fn B ) |
43 |
|
fnconstg |
|- ( Z e. V -> ( B X. { Z } ) Fn B ) |
44 |
43
|
adantl |
|- ( ( F e. W /\ Z e. V ) -> ( B X. { Z } ) Fn B ) |
45 |
44
|
3ad2ant2 |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( B X. { Z } ) Fn B ) |
46 |
|
eqfnfv |
|- ( ( ( F |` B ) Fn B /\ ( B X. { Z } ) Fn B ) -> ( ( F |` B ) = ( B X. { Z } ) <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
47 |
42 45 46
|
syl2anc |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F |` B ) = ( B X. { Z } ) <-> A. a e. B ( ( F |` B ) ` a ) = ( ( B X. { Z } ) ` a ) ) ) |
48 |
30 37 47
|
3bitr4d |
|- ( ( F Fn ( A u. B ) /\ ( F e. W /\ Z e. V ) /\ ( A i^i B ) = (/) ) -> ( ( F supp Z ) C_ A <-> ( F |` B ) = ( B X. { Z } ) ) ) |