Metamath Proof Explorer


Theorem fntopon

Description: The class TopOn is a function with domain the universal class _V . Analogue for topologies of fnmre for Moore collections. (Contributed by BJ, 29-Apr-2021)

Ref Expression
Assertion fntopon
|- TopOn Fn _V

Proof

Step Hyp Ref Expression
1 funtopon
 |-  Fun TopOn
2 dmtopon
 |-  dom TopOn = _V
3 df-fn
 |-  ( TopOn Fn _V <-> ( Fun TopOn /\ dom TopOn = _V ) )
4 1 2 3 mpbir2an
 |-  TopOn Fn _V