Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fntp.1 | |- A e. _V |
|
fntp.2 | |- B e. _V |
||
fntp.3 | |- C e. _V |
||
fntp.4 | |- D e. _V |
||
fntp.5 | |- E e. _V |
||
fntp.6 | |- F e. _V |
||
Assertion | fntp | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , D >. , <. B , E >. , <. C , F >. } Fn { A , B , C } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fntp.1 | |- A e. _V |
|
2 | fntp.2 | |- B e. _V |
|
3 | fntp.3 | |- C e. _V |
|
4 | fntp.4 | |- D e. _V |
|
5 | fntp.5 | |- E e. _V |
|
6 | fntp.6 | |- F e. _V |
|
7 | 1 2 3 4 5 6 | funtp | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , D >. , <. B , E >. , <. C , F >. } ) |
8 | 4 5 6 | dmtpop | |- dom { <. A , D >. , <. B , E >. , <. C , F >. } = { A , B , C } |
9 | df-fn | |- ( { <. A , D >. , <. B , E >. , <. C , F >. } Fn { A , B , C } <-> ( Fun { <. A , D >. , <. B , E >. , <. C , F >. } /\ dom { <. A , D >. , <. B , E >. , <. C , F >. } = { A , B , C } ) ) |
|
10 | 7 8 9 | sylanblrc | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , D >. , <. B , E >. , <. C , F >. } Fn { A , B , C } ) |