Metamath Proof Explorer


Theorem fntp

Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses fntp.1
|- A e. _V
fntp.2
|- B e. _V
fntp.3
|- C e. _V
fntp.4
|- D e. _V
fntp.5
|- E e. _V
fntp.6
|- F e. _V
Assertion fntp
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , D >. , <. B , E >. , <. C , F >. } Fn { A , B , C } )

Proof

Step Hyp Ref Expression
1 fntp.1
 |-  A e. _V
2 fntp.2
 |-  B e. _V
3 fntp.3
 |-  C e. _V
4 fntp.4
 |-  D e. _V
5 fntp.5
 |-  E e. _V
6 fntp.6
 |-  F e. _V
7 1 2 3 4 5 6 funtp
 |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , D >. , <. B , E >. , <. C , F >. } )
8 4 5 6 dmtpop
 |-  dom { <. A , D >. , <. B , E >. , <. C , F >. } = { A , B , C }
9 df-fn
 |-  ( { <. A , D >. , <. B , E >. , <. C , F >. } Fn { A , B , C } <-> ( Fun { <. A , D >. , <. B , E >. , <. C , F >. } /\ dom { <. A , D >. , <. B , E >. , <. C , F >. } = { A , B , C } ) )
10 7 8 9 sylanblrc
 |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , D >. , <. B , E >. , <. C , F >. } Fn { A , B , C } )