| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnprb.a |  |-  A e. _V | 
						
							| 2 |  | fnprb.b |  |-  B e. _V | 
						
							| 3 |  | fntpb.c |  |-  C e. _V | 
						
							| 4 | 1 2 | fnprb |  |-  ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) | 
						
							| 5 |  | tpidm23 |  |-  { A , B , B } = { A , B } | 
						
							| 6 | 5 | eqcomi |  |-  { A , B } = { A , B , B } | 
						
							| 7 | 6 | fneq2i |  |-  ( F Fn { A , B } <-> F Fn { A , B , B } ) | 
						
							| 8 |  | tpidm23 |  |-  { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } | 
						
							| 9 | 8 | eqcomi |  |-  { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } | 
						
							| 10 | 9 | eqeq2i |  |-  ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) | 
						
							| 11 | 4 7 10 | 3bitr3i |  |-  ( F Fn { A , B , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) | 
						
							| 12 | 11 | a1i |  |-  ( B = C -> ( F Fn { A , B , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } ) ) | 
						
							| 13 |  | tpeq3 |  |-  ( B = C -> { A , B , B } = { A , B , C } ) | 
						
							| 14 | 13 | fneq2d |  |-  ( B = C -> ( F Fn { A , B , B } <-> F Fn { A , B , C } ) ) | 
						
							| 15 |  | id |  |-  ( B = C -> B = C ) | 
						
							| 16 |  | fveq2 |  |-  ( B = C -> ( F ` B ) = ( F ` C ) ) | 
						
							| 17 | 15 16 | opeq12d |  |-  ( B = C -> <. B , ( F ` B ) >. = <. C , ( F ` C ) >. ) | 
						
							| 18 | 17 | tpeq3d |  |-  ( B = C -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( B = C -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 20 | 12 14 19 | 3bitr3d |  |-  ( B = C -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 21 | 20 | a1d |  |-  ( B = C -> ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) ) | 
						
							| 22 |  | fndm |  |-  ( F Fn { A , B , C } -> dom F = { A , B , C } ) | 
						
							| 23 |  | fvex |  |-  ( F ` A ) e. _V | 
						
							| 24 |  | fvex |  |-  ( F ` B ) e. _V | 
						
							| 25 |  | fvex |  |-  ( F ` C ) e. _V | 
						
							| 26 | 23 24 25 | dmtpop |  |-  dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } = { A , B , C } | 
						
							| 27 | 22 26 | eqtr4di |  |-  ( F Fn { A , B , C } -> dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 29 | 22 | adantl |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> dom F = { A , B , C } ) | 
						
							| 30 | 29 | eleq2d |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. dom F <-> x e. { A , B , C } ) ) | 
						
							| 31 |  | vex |  |-  x e. _V | 
						
							| 32 | 31 | eltp |  |-  ( x e. { A , B , C } <-> ( x = A \/ x = B \/ x = C ) ) | 
						
							| 33 | 1 23 | fvtp1 |  |-  ( ( A =/= B /\ A =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) = ( F ` A ) ) | 
						
							| 34 | 33 | ad2antrr |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) = ( F ` A ) ) | 
						
							| 35 | 34 | eqcomd |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) | 
						
							| 36 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 37 |  | fveq2 |  |-  ( x = A -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) | 
						
							| 38 | 36 37 | eqeq12d |  |-  ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` A ) ) ) | 
						
							| 39 | 35 38 | syl5ibrcom |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = A -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) | 
						
							| 40 | 2 24 | fvtp2 |  |-  ( ( A =/= B /\ B =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) = ( F ` B ) ) | 
						
							| 41 | 40 | ad4ant13 |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) = ( F ` B ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) | 
						
							| 43 |  | fveq2 |  |-  ( x = B -> ( F ` x ) = ( F ` B ) ) | 
						
							| 44 |  | fveq2 |  |-  ( x = B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) | 
						
							| 45 | 43 44 | eqeq12d |  |-  ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` B ) ) ) | 
						
							| 46 | 42 45 | syl5ibrcom |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = B -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) | 
						
							| 47 | 3 25 | fvtp3 |  |-  ( ( A =/= C /\ B =/= C ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) = ( F ` C ) ) | 
						
							| 48 | 47 | ad4ant23 |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) = ( F ` C ) ) | 
						
							| 49 | 48 | eqcomd |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F ` C ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) | 
						
							| 50 |  | fveq2 |  |-  ( x = C -> ( F ` x ) = ( F ` C ) ) | 
						
							| 51 |  | fveq2 |  |-  ( x = C -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) | 
						
							| 52 | 50 51 | eqeq12d |  |-  ( x = C -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) <-> ( F ` C ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` C ) ) ) | 
						
							| 53 | 49 52 | syl5ibrcom |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x = C -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) | 
						
							| 54 | 39 46 53 | 3jaod |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( ( x = A \/ x = B \/ x = C ) -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) | 
						
							| 55 | 32 54 | biimtrid |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. { A , B , C } -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) | 
						
							| 56 | 30 55 | sylbid |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( x e. dom F -> ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) | 
						
							| 57 | 56 | ralrimiv |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) | 
						
							| 58 |  | fnfun |  |-  ( F Fn { A , B , C } -> Fun F ) | 
						
							| 59 | 1 2 3 23 24 25 | funtp |  |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) -> Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 60 | 59 | 3expa |  |-  ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 61 |  | eqfunfv |  |-  ( ( Fun F /\ Fun { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } <-> ( dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } /\ A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) ) | 
						
							| 62 | 58 60 61 | syl2anr |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } <-> ( dom F = dom { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } /\ A. x e. dom F ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ` x ) ) ) ) | 
						
							| 63 | 28 57 62 | mpbir2and |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F Fn { A , B , C } ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 64 | 1 2 3 23 24 25 | fntp |  |-  ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) | 
						
							| 65 | 64 | 3expa |  |-  ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) | 
						
							| 66 |  | fneq1 |  |-  ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } -> ( F Fn { A , B , C } <-> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } ) ) | 
						
							| 67 | 66 | biimprd |  |-  ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } Fn { A , B , C } -> F Fn { A , B , C } ) ) | 
						
							| 68 | 65 67 | mpan9 |  |-  ( ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) -> F Fn { A , B , C } ) | 
						
							| 69 | 63 68 | impbida |  |-  ( ( ( A =/= B /\ A =/= C ) /\ B =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 70 | 69 | expcom |  |-  ( B =/= C -> ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) ) | 
						
							| 71 | 21 70 | pm2.61ine |  |-  ( ( A =/= B /\ A =/= C ) -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 72 | 1 3 | fnprb |  |-  ( F Fn { A , C } <-> F = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 73 |  | tpidm12 |  |-  { A , A , C } = { A , C } | 
						
							| 74 | 73 | eqcomi |  |-  { A , C } = { A , A , C } | 
						
							| 75 | 74 | fneq2i |  |-  ( F Fn { A , C } <-> F Fn { A , A , C } ) | 
						
							| 76 |  | tpidm12 |  |-  { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } | 
						
							| 77 | 76 | eqcomi |  |-  { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } | 
						
							| 78 | 77 | eqeq2i |  |-  ( F = { <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 79 | 72 75 78 | 3bitr3i |  |-  ( F Fn { A , A , C } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 80 | 79 | a1i |  |-  ( A = B -> ( F Fn { A , A , C } <-> F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 81 |  | tpeq2 |  |-  ( A = B -> { A , A , C } = { A , B , C } ) | 
						
							| 82 | 81 | fneq2d |  |-  ( A = B -> ( F Fn { A , A , C } <-> F Fn { A , B , C } ) ) | 
						
							| 83 |  | id |  |-  ( A = B -> A = B ) | 
						
							| 84 |  | fveq2 |  |-  ( A = B -> ( F ` A ) = ( F ` B ) ) | 
						
							| 85 | 83 84 | opeq12d |  |-  ( A = B -> <. A , ( F ` A ) >. = <. B , ( F ` B ) >. ) | 
						
							| 86 | 85 | tpeq2d |  |-  ( A = B -> { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 87 | 86 | eqeq2d |  |-  ( A = B -> ( F = { <. A , ( F ` A ) >. , <. A , ( F ` A ) >. , <. C , ( F ` C ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 88 | 80 82 87 | 3bitr3d |  |-  ( A = B -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 89 |  | tpidm13 |  |-  { A , B , A } = { A , B } | 
						
							| 90 | 89 | eqcomi |  |-  { A , B } = { A , B , A } | 
						
							| 91 | 90 | fneq2i |  |-  ( F Fn { A , B } <-> F Fn { A , B , A } ) | 
						
							| 92 |  | tpidm13 |  |-  { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } | 
						
							| 93 | 92 | eqcomi |  |-  { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } | 
						
							| 94 | 93 | eqeq2i |  |-  ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) | 
						
							| 95 | 4 91 94 | 3bitr3i |  |-  ( F Fn { A , B , A } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) | 
						
							| 96 | 95 | a1i |  |-  ( A = C -> ( F Fn { A , B , A } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } ) ) | 
						
							| 97 |  | tpeq3 |  |-  ( A = C -> { A , B , A } = { A , B , C } ) | 
						
							| 98 | 97 | fneq2d |  |-  ( A = C -> ( F Fn { A , B , A } <-> F Fn { A , B , C } ) ) | 
						
							| 99 |  | id |  |-  ( A = C -> A = C ) | 
						
							| 100 |  | fveq2 |  |-  ( A = C -> ( F ` A ) = ( F ` C ) ) | 
						
							| 101 | 99 100 | opeq12d |  |-  ( A = C -> <. A , ( F ` A ) >. = <. C , ( F ` C ) >. ) | 
						
							| 102 | 101 | tpeq3d |  |-  ( A = C -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) | 
						
							| 103 | 102 | eqeq2d |  |-  ( A = C -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. A , ( F ` A ) >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 104 | 96 98 103 | 3bitr3d |  |-  ( A = C -> ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) ) | 
						
							| 105 | 71 88 104 | pm2.61iine |  |-  ( F Fn { A , B , C } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. , <. C , ( F ` C ) >. } ) |