Metamath Proof Explorer


Theorem fnunirn

Description: Membership in a union of some function-defined family of sets. (Contributed by Stefan O'Rear, 30-Jan-2015)

Ref Expression
Assertion fnunirn
|- ( F Fn I -> ( A e. U. ran F <-> E. x e. I A e. ( F ` x ) ) )

Proof

Step Hyp Ref Expression
1 fnfun
 |-  ( F Fn I -> Fun F )
2 elunirn
 |-  ( Fun F -> ( A e. U. ran F <-> E. x e. dom F A e. ( F ` x ) ) )
3 1 2 syl
 |-  ( F Fn I -> ( A e. U. ran F <-> E. x e. dom F A e. ( F ` x ) ) )
4 fndm
 |-  ( F Fn I -> dom F = I )
5 4 rexeqdv
 |-  ( F Fn I -> ( E. x e. dom F A e. ( F ` x ) <-> E. x e. I A e. ( F ` x ) ) )
6 3 5 bitrd
 |-  ( F Fn I -> ( A e. U. ran F <-> E. x e. I A e. ( F ` x ) ) )