Step |
Hyp |
Ref |
Expression |
1 |
|
fnunop.x |
|- ( ph -> X e. V ) |
2 |
|
fnunop.y |
|- ( ph -> Y e. W ) |
3 |
|
fnunop.f |
|- ( ph -> F Fn D ) |
4 |
|
fnunop.g |
|- G = ( F u. { <. X , Y >. } ) |
5 |
|
fnunop.e |
|- E = ( D u. { X } ) |
6 |
|
fnunop.d |
|- ( ph -> -. X e. D ) |
7 |
|
fnsng |
|- ( ( X e. V /\ Y e. W ) -> { <. X , Y >. } Fn { X } ) |
8 |
1 2 7
|
syl2anc |
|- ( ph -> { <. X , Y >. } Fn { X } ) |
9 |
|
disjsn |
|- ( ( D i^i { X } ) = (/) <-> -. X e. D ) |
10 |
6 9
|
sylibr |
|- ( ph -> ( D i^i { X } ) = (/) ) |
11 |
3 8 10
|
fnund |
|- ( ph -> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
12 |
4
|
fneq1i |
|- ( G Fn E <-> ( F u. { <. X , Y >. } ) Fn E ) |
13 |
5
|
fneq2i |
|- ( ( F u. { <. X , Y >. } ) Fn E <-> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
14 |
12 13
|
bitri |
|- ( G Fn E <-> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
15 |
11 14
|
sylibr |
|- ( ph -> G Fn E ) |