Step |
Hyp |
Ref |
Expression |
1 |
|
fnwe.1 |
|- T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } |
2 |
|
fnwe.2 |
|- ( ph -> F : A --> B ) |
3 |
|
fnwe.3 |
|- ( ph -> R We B ) |
4 |
|
fnwe.4 |
|- ( ph -> S We A ) |
5 |
|
fnwe.5 |
|- ( ph -> ( F " w ) e. _V ) |
6 |
|
fnwelem.6 |
|- Q = { <. u , v >. | ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) } |
7 |
|
fnwelem.7 |
|- G = ( z e. A |-> <. ( F ` z ) , z >. ) |
8 |
|
ffvelrn |
|- ( ( F : A --> B /\ z e. A ) -> ( F ` z ) e. B ) |
9 |
|
simpr |
|- ( ( F : A --> B /\ z e. A ) -> z e. A ) |
10 |
8 9
|
opelxpd |
|- ( ( F : A --> B /\ z e. A ) -> <. ( F ` z ) , z >. e. ( B X. A ) ) |
11 |
10 7
|
fmptd |
|- ( F : A --> B -> G : A --> ( B X. A ) ) |
12 |
|
frn |
|- ( G : A --> ( B X. A ) -> ran G C_ ( B X. A ) ) |
13 |
2 11 12
|
3syl |
|- ( ph -> ran G C_ ( B X. A ) ) |
14 |
6
|
wexp |
|- ( ( R We B /\ S We A ) -> Q We ( B X. A ) ) |
15 |
3 4 14
|
syl2anc |
|- ( ph -> Q We ( B X. A ) ) |
16 |
|
wess |
|- ( ran G C_ ( B X. A ) -> ( Q We ( B X. A ) -> Q We ran G ) ) |
17 |
13 15 16
|
sylc |
|- ( ph -> Q We ran G ) |
18 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
19 |
|
id |
|- ( z = x -> z = x ) |
20 |
18 19
|
opeq12d |
|- ( z = x -> <. ( F ` z ) , z >. = <. ( F ` x ) , x >. ) |
21 |
|
opex |
|- <. ( F ` x ) , x >. e. _V |
22 |
20 7 21
|
fvmpt |
|- ( x e. A -> ( G ` x ) = <. ( F ` x ) , x >. ) |
23 |
|
fveq2 |
|- ( z = y -> ( F ` z ) = ( F ` y ) ) |
24 |
|
id |
|- ( z = y -> z = y ) |
25 |
23 24
|
opeq12d |
|- ( z = y -> <. ( F ` z ) , z >. = <. ( F ` y ) , y >. ) |
26 |
|
opex |
|- <. ( F ` y ) , y >. e. _V |
27 |
25 7 26
|
fvmpt |
|- ( y e. A -> ( G ` y ) = <. ( F ` y ) , y >. ) |
28 |
22 27
|
eqeqan12d |
|- ( ( x e. A /\ y e. A ) -> ( ( G ` x ) = ( G ` y ) <-> <. ( F ` x ) , x >. = <. ( F ` y ) , y >. ) ) |
29 |
|
fvex |
|- ( F ` x ) e. _V |
30 |
|
vex |
|- x e. _V |
31 |
29 30
|
opth |
|- ( <. ( F ` x ) , x >. = <. ( F ` y ) , y >. <-> ( ( F ` x ) = ( F ` y ) /\ x = y ) ) |
32 |
31
|
simprbi |
|- ( <. ( F ` x ) , x >. = <. ( F ` y ) , y >. -> x = y ) |
33 |
28 32
|
syl6bi |
|- ( ( x e. A /\ y e. A ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
34 |
33
|
rgen2 |
|- A. x e. A A. y e. A ( ( G ` x ) = ( G ` y ) -> x = y ) |
35 |
|
dff13 |
|- ( G : A -1-1-> ( B X. A ) <-> ( G : A --> ( B X. A ) /\ A. x e. A A. y e. A ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) |
36 |
11 34 35
|
sylanblrc |
|- ( F : A --> B -> G : A -1-1-> ( B X. A ) ) |
37 |
|
f1f1orn |
|- ( G : A -1-1-> ( B X. A ) -> G : A -1-1-onto-> ran G ) |
38 |
|
f1ocnv |
|- ( G : A -1-1-onto-> ran G -> `' G : ran G -1-1-onto-> A ) |
39 |
2 36 37 38
|
4syl |
|- ( ph -> `' G : ran G -1-1-onto-> A ) |
40 |
|
eqid |
|- { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } |
41 |
40
|
f1oiso2 |
|- ( `' G : ran G -1-1-onto-> A -> `' G Isom Q , { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ( ran G , A ) ) |
42 |
|
frel |
|- ( G : A --> ( B X. A ) -> Rel G ) |
43 |
|
dfrel2 |
|- ( Rel G <-> `' `' G = G ) |
44 |
42 43
|
sylib |
|- ( G : A --> ( B X. A ) -> `' `' G = G ) |
45 |
44
|
fveq1d |
|- ( G : A --> ( B X. A ) -> ( `' `' G ` x ) = ( G ` x ) ) |
46 |
44
|
fveq1d |
|- ( G : A --> ( B X. A ) -> ( `' `' G ` y ) = ( G ` y ) ) |
47 |
45 46
|
breq12d |
|- ( G : A --> ( B X. A ) -> ( ( `' `' G ` x ) Q ( `' `' G ` y ) <-> ( G ` x ) Q ( G ` y ) ) ) |
48 |
11 47
|
syl |
|- ( F : A --> B -> ( ( `' `' G ` x ) Q ( `' `' G ` y ) <-> ( G ` x ) Q ( G ` y ) ) ) |
49 |
48
|
adantr |
|- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( `' `' G ` x ) Q ( `' `' G ` y ) <-> ( G ` x ) Q ( G ` y ) ) ) |
50 |
22 27
|
breqan12d |
|- ( ( x e. A /\ y e. A ) -> ( ( G ` x ) Q ( G ` y ) <-> <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. ) ) |
51 |
50
|
adantl |
|- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( G ` x ) Q ( G ` y ) <-> <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. ) ) |
52 |
|
eleq1 |
|- ( u = <. ( F ` x ) , x >. -> ( u e. ( B X. A ) <-> <. ( F ` x ) , x >. e. ( B X. A ) ) ) |
53 |
|
opelxp |
|- ( <. ( F ` x ) , x >. e. ( B X. A ) <-> ( ( F ` x ) e. B /\ x e. A ) ) |
54 |
52 53
|
bitrdi |
|- ( u = <. ( F ` x ) , x >. -> ( u e. ( B X. A ) <-> ( ( F ` x ) e. B /\ x e. A ) ) ) |
55 |
54
|
anbi1d |
|- ( u = <. ( F ` x ) , x >. -> ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) <-> ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) ) ) |
56 |
29 30
|
op1std |
|- ( u = <. ( F ` x ) , x >. -> ( 1st ` u ) = ( F ` x ) ) |
57 |
56
|
breq1d |
|- ( u = <. ( F ` x ) , x >. -> ( ( 1st ` u ) R ( 1st ` v ) <-> ( F ` x ) R ( 1st ` v ) ) ) |
58 |
56
|
eqeq1d |
|- ( u = <. ( F ` x ) , x >. -> ( ( 1st ` u ) = ( 1st ` v ) <-> ( F ` x ) = ( 1st ` v ) ) ) |
59 |
29 30
|
op2ndd |
|- ( u = <. ( F ` x ) , x >. -> ( 2nd ` u ) = x ) |
60 |
59
|
breq1d |
|- ( u = <. ( F ` x ) , x >. -> ( ( 2nd ` u ) S ( 2nd ` v ) <-> x S ( 2nd ` v ) ) ) |
61 |
58 60
|
anbi12d |
|- ( u = <. ( F ` x ) , x >. -> ( ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) <-> ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) |
62 |
57 61
|
orbi12d |
|- ( u = <. ( F ` x ) , x >. -> ( ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) <-> ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) ) |
63 |
55 62
|
anbi12d |
|- ( u = <. ( F ` x ) , x >. -> ( ( ( u e. ( B X. A ) /\ v e. ( B X. A ) ) /\ ( ( 1st ` u ) R ( 1st ` v ) \/ ( ( 1st ` u ) = ( 1st ` v ) /\ ( 2nd ` u ) S ( 2nd ` v ) ) ) ) <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) /\ ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) ) ) |
64 |
|
eleq1 |
|- ( v = <. ( F ` y ) , y >. -> ( v e. ( B X. A ) <-> <. ( F ` y ) , y >. e. ( B X. A ) ) ) |
65 |
|
opelxp |
|- ( <. ( F ` y ) , y >. e. ( B X. A ) <-> ( ( F ` y ) e. B /\ y e. A ) ) |
66 |
64 65
|
bitrdi |
|- ( v = <. ( F ` y ) , y >. -> ( v e. ( B X. A ) <-> ( ( F ` y ) e. B /\ y e. A ) ) ) |
67 |
66
|
anbi2d |
|- ( v = <. ( F ` y ) , y >. -> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) <-> ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) ) ) |
68 |
|
fvex |
|- ( F ` y ) e. _V |
69 |
|
vex |
|- y e. _V |
70 |
68 69
|
op1std |
|- ( v = <. ( F ` y ) , y >. -> ( 1st ` v ) = ( F ` y ) ) |
71 |
70
|
breq2d |
|- ( v = <. ( F ` y ) , y >. -> ( ( F ` x ) R ( 1st ` v ) <-> ( F ` x ) R ( F ` y ) ) ) |
72 |
70
|
eqeq2d |
|- ( v = <. ( F ` y ) , y >. -> ( ( F ` x ) = ( 1st ` v ) <-> ( F ` x ) = ( F ` y ) ) ) |
73 |
68 69
|
op2ndd |
|- ( v = <. ( F ` y ) , y >. -> ( 2nd ` v ) = y ) |
74 |
73
|
breq2d |
|- ( v = <. ( F ` y ) , y >. -> ( x S ( 2nd ` v ) <-> x S y ) ) |
75 |
72 74
|
anbi12d |
|- ( v = <. ( F ` y ) , y >. -> ( ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) <-> ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) |
76 |
71 75
|
orbi12d |
|- ( v = <. ( F ` y ) , y >. -> ( ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) <-> ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) |
77 |
67 76
|
anbi12d |
|- ( v = <. ( F ` y ) , y >. -> ( ( ( ( ( F ` x ) e. B /\ x e. A ) /\ v e. ( B X. A ) ) /\ ( ( F ` x ) R ( 1st ` v ) \/ ( ( F ` x ) = ( 1st ` v ) /\ x S ( 2nd ` v ) ) ) ) <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) ) |
78 |
21 26 63 77 6
|
brab |
|- ( <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) |
79 |
|
ffvelrn |
|- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
80 |
|
simpr |
|- ( ( F : A --> B /\ x e. A ) -> x e. A ) |
81 |
79 80
|
jca |
|- ( ( F : A --> B /\ x e. A ) -> ( ( F ` x ) e. B /\ x e. A ) ) |
82 |
|
ffvelrn |
|- ( ( F : A --> B /\ y e. A ) -> ( F ` y ) e. B ) |
83 |
|
simpr |
|- ( ( F : A --> B /\ y e. A ) -> y e. A ) |
84 |
82 83
|
jca |
|- ( ( F : A --> B /\ y e. A ) -> ( ( F ` y ) e. B /\ y e. A ) ) |
85 |
81 84
|
anim12dan |
|- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) ) |
86 |
85
|
biantrurd |
|- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) <-> ( ( ( ( F ` x ) e. B /\ x e. A ) /\ ( ( F ` y ) e. B /\ y e. A ) ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) ) |
87 |
78 86
|
bitr4id |
|- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( <. ( F ` x ) , x >. Q <. ( F ` y ) , y >. <-> ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) ) |
88 |
49 51 87
|
3bitrrd |
|- ( ( F : A --> B /\ ( x e. A /\ y e. A ) ) -> ( ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) <-> ( `' `' G ` x ) Q ( `' `' G ` y ) ) ) |
89 |
88
|
pm5.32da |
|- ( F : A --> B -> ( ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) <-> ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) ) ) |
90 |
89
|
opabbidv |
|- ( F : A --> B -> { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x S y ) ) ) } = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ) |
91 |
1 90
|
eqtrid |
|- ( F : A --> B -> T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ) |
92 |
|
isoeq3 |
|- ( T = { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } -> ( `' G Isom Q , T ( ran G , A ) <-> `' G Isom Q , { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ( ran G , A ) ) ) |
93 |
91 92
|
syl |
|- ( F : A --> B -> ( `' G Isom Q , T ( ran G , A ) <-> `' G Isom Q , { <. x , y >. | ( ( x e. A /\ y e. A ) /\ ( `' `' G ` x ) Q ( `' `' G ` y ) ) } ( ran G , A ) ) ) |
94 |
41 93
|
syl5ibr |
|- ( F : A --> B -> ( `' G : ran G -1-1-onto-> A -> `' G Isom Q , T ( ran G , A ) ) ) |
95 |
2 39 94
|
sylc |
|- ( ph -> `' G Isom Q , T ( ran G , A ) ) |
96 |
|
isocnv |
|- ( `' G Isom Q , T ( ran G , A ) -> `' `' G Isom T , Q ( A , ran G ) ) |
97 |
95 96
|
syl |
|- ( ph -> `' `' G Isom T , Q ( A , ran G ) ) |
98 |
|
imacnvcnv |
|- ( `' `' G " w ) = ( G " w ) |
99 |
|
vex |
|- w e. _V |
100 |
|
xpexg |
|- ( ( ( F " w ) e. _V /\ w e. _V ) -> ( ( F " w ) X. w ) e. _V ) |
101 |
5 99 100
|
sylancl |
|- ( ph -> ( ( F " w ) X. w ) e. _V ) |
102 |
|
imadmres |
|- ( G " dom ( G |` w ) ) = ( G " w ) |
103 |
|
dmres |
|- dom ( G |` w ) = ( w i^i dom G ) |
104 |
103
|
elin2 |
|- ( x e. dom ( G |` w ) <-> ( x e. w /\ x e. dom G ) ) |
105 |
|
simprr |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. dom G ) |
106 |
|
f1dm |
|- ( G : A -1-1-> ( B X. A ) -> dom G = A ) |
107 |
2 36 106
|
3syl |
|- ( ph -> dom G = A ) |
108 |
107
|
adantr |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> dom G = A ) |
109 |
105 108
|
eleqtrd |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. A ) |
110 |
109 22
|
syl |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( G ` x ) = <. ( F ` x ) , x >. ) |
111 |
2
|
ffnd |
|- ( ph -> F Fn A ) |
112 |
111
|
adantr |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> F Fn A ) |
113 |
|
dmres |
|- dom ( F |` w ) = ( w i^i dom F ) |
114 |
|
inss2 |
|- ( w i^i dom F ) C_ dom F |
115 |
112
|
fndmd |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> dom F = A ) |
116 |
114 115
|
sseqtrid |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( w i^i dom F ) C_ A ) |
117 |
113 116
|
eqsstrid |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> dom ( F |` w ) C_ A ) |
118 |
|
simprl |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. w ) |
119 |
109 115
|
eleqtrrd |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. dom F ) |
120 |
113
|
elin2 |
|- ( x e. dom ( F |` w ) <-> ( x e. w /\ x e. dom F ) ) |
121 |
118 119 120
|
sylanbrc |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> x e. dom ( F |` w ) ) |
122 |
|
fnfvima |
|- ( ( F Fn A /\ dom ( F |` w ) C_ A /\ x e. dom ( F |` w ) ) -> ( F ` x ) e. ( F " dom ( F |` w ) ) ) |
123 |
112 117 121 122
|
syl3anc |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( F ` x ) e. ( F " dom ( F |` w ) ) ) |
124 |
|
imadmres |
|- ( F " dom ( F |` w ) ) = ( F " w ) |
125 |
123 124
|
eleqtrdi |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( F ` x ) e. ( F " w ) ) |
126 |
125 118
|
opelxpd |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> <. ( F ` x ) , x >. e. ( ( F " w ) X. w ) ) |
127 |
110 126
|
eqeltrd |
|- ( ( ph /\ ( x e. w /\ x e. dom G ) ) -> ( G ` x ) e. ( ( F " w ) X. w ) ) |
128 |
104 127
|
sylan2b |
|- ( ( ph /\ x e. dom ( G |` w ) ) -> ( G ` x ) e. ( ( F " w ) X. w ) ) |
129 |
128
|
ralrimiva |
|- ( ph -> A. x e. dom ( G |` w ) ( G ` x ) e. ( ( F " w ) X. w ) ) |
130 |
|
f1fun |
|- ( G : A -1-1-> ( B X. A ) -> Fun G ) |
131 |
2 36 130
|
3syl |
|- ( ph -> Fun G ) |
132 |
|
resss |
|- ( G |` w ) C_ G |
133 |
|
dmss |
|- ( ( G |` w ) C_ G -> dom ( G |` w ) C_ dom G ) |
134 |
132 133
|
ax-mp |
|- dom ( G |` w ) C_ dom G |
135 |
|
funimass4 |
|- ( ( Fun G /\ dom ( G |` w ) C_ dom G ) -> ( ( G " dom ( G |` w ) ) C_ ( ( F " w ) X. w ) <-> A. x e. dom ( G |` w ) ( G ` x ) e. ( ( F " w ) X. w ) ) ) |
136 |
131 134 135
|
sylancl |
|- ( ph -> ( ( G " dom ( G |` w ) ) C_ ( ( F " w ) X. w ) <-> A. x e. dom ( G |` w ) ( G ` x ) e. ( ( F " w ) X. w ) ) ) |
137 |
129 136
|
mpbird |
|- ( ph -> ( G " dom ( G |` w ) ) C_ ( ( F " w ) X. w ) ) |
138 |
102 137
|
eqsstrrid |
|- ( ph -> ( G " w ) C_ ( ( F " w ) X. w ) ) |
139 |
101 138
|
ssexd |
|- ( ph -> ( G " w ) e. _V ) |
140 |
98 139
|
eqeltrid |
|- ( ph -> ( `' `' G " w ) e. _V ) |
141 |
140
|
alrimiv |
|- ( ph -> A. w ( `' `' G " w ) e. _V ) |
142 |
|
isowe2 |
|- ( ( `' `' G Isom T , Q ( A , ran G ) /\ A. w ( `' `' G " w ) e. _V ) -> ( Q We ran G -> T We A ) ) |
143 |
97 141 142
|
syl2anc |
|- ( ph -> ( Q We ran G -> T We A ) ) |
144 |
17 143
|
mpd |
|- ( ph -> T We A ) |