Step |
Hyp |
Ref |
Expression |
1 |
|
fofn |
|- ( F : (/) -onto-> A -> F Fn (/) ) |
2 |
|
fn0 |
|- ( F Fn (/) <-> F = (/) ) |
3 |
|
f10 |
|- (/) : (/) -1-1-> A |
4 |
|
f1eq1 |
|- ( F = (/) -> ( F : (/) -1-1-> A <-> (/) : (/) -1-1-> A ) ) |
5 |
3 4
|
mpbiri |
|- ( F = (/) -> F : (/) -1-1-> A ) |
6 |
2 5
|
sylbi |
|- ( F Fn (/) -> F : (/) -1-1-> A ) |
7 |
1 6
|
syl |
|- ( F : (/) -onto-> A -> F : (/) -1-1-> A ) |
8 |
7
|
ancri |
|- ( F : (/) -onto-> A -> ( F : (/) -1-1-> A /\ F : (/) -onto-> A ) ) |
9 |
|
df-f1o |
|- ( F : (/) -1-1-onto-> A <-> ( F : (/) -1-1-> A /\ F : (/) -onto-> A ) ) |
10 |
8 9
|
sylibr |
|- ( F : (/) -onto-> A -> F : (/) -1-1-onto-> A ) |
11 |
|
f1ofo |
|- ( F : (/) -1-1-onto-> A -> F : (/) -onto-> A ) |
12 |
10 11
|
impbii |
|- ( F : (/) -onto-> A <-> F : (/) -1-1-onto-> A ) |
13 |
|
f1o00 |
|- ( F : (/) -1-1-onto-> A <-> ( F = (/) /\ A = (/) ) ) |
14 |
12 13
|
bitri |
|- ( F : (/) -onto-> A <-> ( F = (/) /\ A = (/) ) ) |