Step |
Hyp |
Ref |
Expression |
1 |
|
fof |
|- ( F : A -onto-> B -> F : A --> B ) |
2 |
1
|
anim2i |
|- ( ( A e. V /\ F : A -onto-> B ) -> ( A e. V /\ F : A --> B ) ) |
3 |
2
|
ancomd |
|- ( ( A e. V /\ F : A -onto-> B ) -> ( F : A --> B /\ A e. V ) ) |
4 |
|
fex |
|- ( ( F : A --> B /\ A e. V ) -> F e. _V ) |
5 |
|
rnexg |
|- ( F e. _V -> ran F e. _V ) |
6 |
3 4 5
|
3syl |
|- ( ( A e. V /\ F : A -onto-> B ) -> ran F e. _V ) |
7 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
8 |
7
|
eleq1d |
|- ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) ) |
9 |
8
|
adantl |
|- ( ( A e. V /\ F : A -onto-> B ) -> ( ran F e. _V <-> B e. _V ) ) |
10 |
6 9
|
mpbid |
|- ( ( A e. V /\ F : A -onto-> B ) -> B e. _V ) |