Metamath Proof Explorer


Theorem focdmex

Description: The codomain of an onto function is a set if its domain is a set. (Contributed by AV, 4-May-2021)

Ref Expression
Assertion focdmex
|- ( ( A e. V /\ F : A -onto-> B ) -> B e. _V )

Proof

Step Hyp Ref Expression
1 fof
 |-  ( F : A -onto-> B -> F : A --> B )
2 1 anim2i
 |-  ( ( A e. V /\ F : A -onto-> B ) -> ( A e. V /\ F : A --> B ) )
3 2 ancomd
 |-  ( ( A e. V /\ F : A -onto-> B ) -> ( F : A --> B /\ A e. V ) )
4 fex
 |-  ( ( F : A --> B /\ A e. V ) -> F e. _V )
5 rnexg
 |-  ( F e. _V -> ran F e. _V )
6 3 4 5 3syl
 |-  ( ( A e. V /\ F : A -onto-> B ) -> ran F e. _V )
7 forn
 |-  ( F : A -onto-> B -> ran F = B )
8 7 eleq1d
 |-  ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) )
9 8 adantl
 |-  ( ( A e. V /\ F : A -onto-> B ) -> ( ran F e. _V <-> B e. _V ) )
10 6 9 mpbid
 |-  ( ( A e. V /\ F : A -onto-> B ) -> B e. _V )