| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fofun |
|- ( F : A -onto-> B -> Fun F ) |
| 2 |
|
funrnex |
|- ( dom F e. C -> ( Fun F -> ran F e. _V ) ) |
| 3 |
1 2
|
syl5com |
|- ( F : A -onto-> B -> ( dom F e. C -> ran F e. _V ) ) |
| 4 |
|
fof |
|- ( F : A -onto-> B -> F : A --> B ) |
| 5 |
4
|
fdmd |
|- ( F : A -onto-> B -> dom F = A ) |
| 6 |
5
|
eleq1d |
|- ( F : A -onto-> B -> ( dom F e. C <-> A e. C ) ) |
| 7 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
| 8 |
7
|
eleq1d |
|- ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) ) |
| 9 |
3 6 8
|
3imtr3d |
|- ( F : A -onto-> B -> ( A e. C -> B e. _V ) ) |
| 10 |
9
|
com12 |
|- ( A e. C -> ( F : A -onto-> B -> B e. _V ) ) |