Metamath Proof Explorer


Theorem focnvimacdmdm

Description: The preimage of the codomain of a surjection is its domain. (Contributed by AV, 29-Sep-2024)

Ref Expression
Assertion focnvimacdmdm
|- ( G : A -onto-> B -> ( `' G " B ) = A )

Proof

Step Hyp Ref Expression
1 forn
 |-  ( G : A -onto-> B -> ran G = B )
2 1 eqcomd
 |-  ( G : A -onto-> B -> B = ran G )
3 2 imaeq2d
 |-  ( G : A -onto-> B -> ( `' G " B ) = ( `' G " ran G ) )
4 cnvimarndm
 |-  ( `' G " ran G ) = dom G
5 3 4 eqtrdi
 |-  ( G : A -onto-> B -> ( `' G " B ) = dom G )
6 fof
 |-  ( G : A -onto-> B -> G : A --> B )
7 6 fdmd
 |-  ( G : A -onto-> B -> dom G = A )
8 5 7 eqtrd
 |-  ( G : A -onto-> B -> ( `' G " B ) = A )