Description: The composition of an onto function and its converse. (Contributed by Stefan O'Rear, 12-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fococnv2 | |- ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun | |- ( F : A -onto-> B -> Fun F ) |
|
| 2 | funcocnv2 | |- ( Fun F -> ( F o. `' F ) = ( _I |` ran F ) ) |
|
| 3 | 1 2 | syl | |- ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` ran F ) ) |
| 4 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 5 | 4 | reseq2d | |- ( F : A -onto-> B -> ( _I |` ran F ) = ( _I |` B ) ) |
| 6 | 3 5 | eqtrd | |- ( F : A -onto-> B -> ( F o. `' F ) = ( _I |` B ) ) |