| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frel |
|- ( F : A --> { B } -> Rel F ) |
| 2 |
|
relrn0 |
|- ( Rel F -> ( F = (/) <-> ran F = (/) ) ) |
| 3 |
2
|
necon3abid |
|- ( Rel F -> ( F =/= (/) <-> -. ran F = (/) ) ) |
| 4 |
1 3
|
syl |
|- ( F : A --> { B } -> ( F =/= (/) <-> -. ran F = (/) ) ) |
| 5 |
|
frn |
|- ( F : A --> { B } -> ran F C_ { B } ) |
| 6 |
|
sssn |
|- ( ran F C_ { B } <-> ( ran F = (/) \/ ran F = { B } ) ) |
| 7 |
5 6
|
sylib |
|- ( F : A --> { B } -> ( ran F = (/) \/ ran F = { B } ) ) |
| 8 |
7
|
ord |
|- ( F : A --> { B } -> ( -. ran F = (/) -> ran F = { B } ) ) |
| 9 |
4 8
|
sylbid |
|- ( F : A --> { B } -> ( F =/= (/) -> ran F = { B } ) ) |
| 10 |
9
|
imdistani |
|- ( ( F : A --> { B } /\ F =/= (/) ) -> ( F : A --> { B } /\ ran F = { B } ) ) |
| 11 |
|
dffo2 |
|- ( F : A -onto-> { B } <-> ( F : A --> { B } /\ ran F = { B } ) ) |
| 12 |
10 11
|
sylibr |
|- ( ( F : A --> { B } /\ F =/= (/) ) -> F : A -onto-> { B } ) |