Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | fodmrnu | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> ( A = C /\ B = D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
2 | fofn | |- ( F : C -onto-> D -> F Fn C ) |
|
3 | fndmu | |- ( ( F Fn A /\ F Fn C ) -> A = C ) |
|
4 | 1 2 3 | syl2an | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> A = C ) |
5 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
6 | forn | |- ( F : C -onto-> D -> ran F = D ) |
|
7 | 5 6 | sylan9req | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> B = D ) |
8 | 4 7 | jca | |- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> ( A = C /\ B = D ) ) |