Metamath Proof Explorer


Theorem fodmrnu

Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006)

Ref Expression
Assertion fodmrnu
|- ( ( F : A -onto-> B /\ F : C -onto-> D ) -> ( A = C /\ B = D ) )

Proof

Step Hyp Ref Expression
1 fofn
 |-  ( F : A -onto-> B -> F Fn A )
2 fofn
 |-  ( F : C -onto-> D -> F Fn C )
3 fndmu
 |-  ( ( F Fn A /\ F Fn C ) -> A = C )
4 1 2 3 syl2an
 |-  ( ( F : A -onto-> B /\ F : C -onto-> D ) -> A = C )
5 forn
 |-  ( F : A -onto-> B -> ran F = B )
6 forn
 |-  ( F : C -onto-> D -> ran F = D )
7 5 6 sylan9req
 |-  ( ( F : A -onto-> B /\ F : C -onto-> D ) -> B = D )
8 4 7 jca
 |-  ( ( F : A -onto-> B /\ F : C -onto-> D ) -> ( A = C /\ B = D ) )