| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fof |  |-  ( f : A -onto-> B -> f : A --> B ) | 
						
							| 2 | 1 | fdmd |  |-  ( f : A -onto-> B -> dom f = A ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( f : A -onto-> B -> ( dom f = (/) <-> A = (/) ) ) | 
						
							| 4 |  | dm0rn0 |  |-  ( dom f = (/) <-> ran f = (/) ) | 
						
							| 5 |  | forn |  |-  ( f : A -onto-> B -> ran f = B ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( f : A -onto-> B -> ( ran f = (/) <-> B = (/) ) ) | 
						
							| 7 | 4 6 | bitrid |  |-  ( f : A -onto-> B -> ( dom f = (/) <-> B = (/) ) ) | 
						
							| 8 | 3 7 | bitr3d |  |-  ( f : A -onto-> B -> ( A = (/) <-> B = (/) ) ) | 
						
							| 9 | 8 | necon3bid |  |-  ( f : A -onto-> B -> ( A =/= (/) <-> B =/= (/) ) ) | 
						
							| 10 | 9 | biimpac |  |-  ( ( A =/= (/) /\ f : A -onto-> B ) -> B =/= (/) ) | 
						
							| 11 |  | vex |  |-  f e. _V | 
						
							| 12 | 11 | dmex |  |-  dom f e. _V | 
						
							| 13 | 2 12 | eqeltrrdi |  |-  ( f : A -onto-> B -> A e. _V ) | 
						
							| 14 |  | focdmex |  |-  ( A e. _V -> ( f : A -onto-> B -> B e. _V ) ) | 
						
							| 15 | 13 14 | mpcom |  |-  ( f : A -onto-> B -> B e. _V ) | 
						
							| 16 |  | 0sdomg |  |-  ( B e. _V -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( f : A -onto-> B -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( A =/= (/) /\ f : A -onto-> B ) -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 19 | 10 18 | mpbird |  |-  ( ( A =/= (/) /\ f : A -onto-> B ) -> (/) ~< B ) | 
						
							| 20 | 19 | ex |  |-  ( A =/= (/) -> ( f : A -onto-> B -> (/) ~< B ) ) | 
						
							| 21 |  | fodomg |  |-  ( A e. _V -> ( f : A -onto-> B -> B ~<_ A ) ) | 
						
							| 22 | 13 21 | mpcom |  |-  ( f : A -onto-> B -> B ~<_ A ) | 
						
							| 23 | 20 22 | jca2 |  |-  ( A =/= (/) -> ( f : A -onto-> B -> ( (/) ~< B /\ B ~<_ A ) ) ) | 
						
							| 24 | 23 | exlimdv |  |-  ( A =/= (/) -> ( E. f f : A -onto-> B -> ( (/) ~< B /\ B ~<_ A ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( A =/= (/) /\ E. f f : A -onto-> B ) -> ( (/) ~< B /\ B ~<_ A ) ) | 
						
							| 26 |  | sdomdomtr |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> (/) ~< A ) | 
						
							| 27 |  | reldom |  |-  Rel ~<_ | 
						
							| 28 | 27 | brrelex2i |  |-  ( B ~<_ A -> A e. _V ) | 
						
							| 29 | 28 | adantl |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> A e. _V ) | 
						
							| 30 |  | 0sdomg |  |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 32 | 26 31 | mpbid |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> A =/= (/) ) | 
						
							| 33 |  | fodomr |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> E. f f : A -onto-> B ) | 
						
							| 34 | 32 33 | jca |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> ( A =/= (/) /\ E. f f : A -onto-> B ) ) | 
						
							| 35 | 25 34 | impbii |  |-  ( ( A =/= (/) /\ E. f f : A -onto-> B ) <-> ( (/) ~< B /\ B ~<_ A ) ) |