| Step |
Hyp |
Ref |
Expression |
| 1 |
|
foima |
|- ( F : A -onto-> B -> ( F " A ) = B ) |
| 2 |
1
|
adantl |
|- ( ( A e. Fin /\ F : A -onto-> B ) -> ( F " A ) = B ) |
| 3 |
|
imaeq2 |
|- ( x = (/) -> ( F " x ) = ( F " (/) ) ) |
| 4 |
|
ima0 |
|- ( F " (/) ) = (/) |
| 5 |
3 4
|
eqtrdi |
|- ( x = (/) -> ( F " x ) = (/) ) |
| 6 |
|
id |
|- ( x = (/) -> x = (/) ) |
| 7 |
5 6
|
breq12d |
|- ( x = (/) -> ( ( F " x ) ~<_ x <-> (/) ~<_ (/) ) ) |
| 8 |
7
|
imbi2d |
|- ( x = (/) -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> (/) ~<_ (/) ) ) ) |
| 9 |
|
imaeq2 |
|- ( x = y -> ( F " x ) = ( F " y ) ) |
| 10 |
|
id |
|- ( x = y -> x = y ) |
| 11 |
9 10
|
breq12d |
|- ( x = y -> ( ( F " x ) ~<_ x <-> ( F " y ) ~<_ y ) ) |
| 12 |
11
|
imbi2d |
|- ( x = y -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " y ) ~<_ y ) ) ) |
| 13 |
|
imaeq2 |
|- ( x = ( y u. { z } ) -> ( F " x ) = ( F " ( y u. { z } ) ) ) |
| 14 |
|
id |
|- ( x = ( y u. { z } ) -> x = ( y u. { z } ) ) |
| 15 |
13 14
|
breq12d |
|- ( x = ( y u. { z } ) -> ( ( F " x ) ~<_ x <-> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) |
| 16 |
15
|
imbi2d |
|- ( x = ( y u. { z } ) -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) |
| 17 |
|
imaeq2 |
|- ( x = A -> ( F " x ) = ( F " A ) ) |
| 18 |
|
id |
|- ( x = A -> x = A ) |
| 19 |
17 18
|
breq12d |
|- ( x = A -> ( ( F " x ) ~<_ x <-> ( F " A ) ~<_ A ) ) |
| 20 |
19
|
imbi2d |
|- ( x = A -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " A ) ~<_ A ) ) ) |
| 21 |
|
0ex |
|- (/) e. _V |
| 22 |
21
|
0dom |
|- (/) ~<_ (/) |
| 23 |
22
|
a1i |
|- ( F Fn A -> (/) ~<_ (/) ) |
| 24 |
|
fnfun |
|- ( F Fn A -> Fun F ) |
| 25 |
24
|
ad2antrl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> Fun F ) |
| 26 |
|
funressn |
|- ( Fun F -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) |
| 27 |
|
rnss |
|- ( ( F |` { z } ) C_ { <. z , ( F ` z ) >. } -> ran ( F |` { z } ) C_ ran { <. z , ( F ` z ) >. } ) |
| 28 |
25 26 27
|
3syl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ran ( F |` { z } ) C_ ran { <. z , ( F ` z ) >. } ) |
| 29 |
|
df-ima |
|- ( F " { z } ) = ran ( F |` { z } ) |
| 30 |
|
vex |
|- z e. _V |
| 31 |
30
|
rnsnop |
|- ran { <. z , ( F ` z ) >. } = { ( F ` z ) } |
| 32 |
31
|
eqcomi |
|- { ( F ` z ) } = ran { <. z , ( F ` z ) >. } |
| 33 |
28 29 32
|
3sstr4g |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) C_ { ( F ` z ) } ) |
| 34 |
|
snfi |
|- { ( F ` z ) } e. Fin |
| 35 |
|
ssexg |
|- ( ( ( F " { z } ) C_ { ( F ` z ) } /\ { ( F ` z ) } e. Fin ) -> ( F " { z } ) e. _V ) |
| 36 |
33 34 35
|
sylancl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) e. _V ) |
| 37 |
|
fvi |
|- ( ( F " { z } ) e. _V -> ( _I ` ( F " { z } ) ) = ( F " { z } ) ) |
| 38 |
36 37
|
syl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( _I ` ( F " { z } ) ) = ( F " { z } ) ) |
| 39 |
38
|
uneq2d |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) = ( ( F " y ) u. ( F " { z } ) ) ) |
| 40 |
|
imaundi |
|- ( F " ( y u. { z } ) ) = ( ( F " y ) u. ( F " { z } ) ) |
| 41 |
39 40
|
eqtr4di |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) = ( F " ( y u. { z } ) ) ) |
| 42 |
|
simprr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " y ) ~<_ y ) |
| 43 |
|
ssdomfi |
|- ( { ( F ` z ) } e. Fin -> ( ( F " { z } ) C_ { ( F ` z ) } -> ( F " { z } ) ~<_ { ( F ` z ) } ) ) |
| 44 |
34 33 43
|
mpsyl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) ~<_ { ( F ` z ) } ) |
| 45 |
|
fvex |
|- ( F ` z ) e. _V |
| 46 |
|
en2sn |
|- ( ( ( F ` z ) e. _V /\ z e. _V ) -> { ( F ` z ) } ~~ { z } ) |
| 47 |
45 30 46
|
mp2an |
|- { ( F ` z ) } ~~ { z } |
| 48 |
|
endom |
|- ( { ( F ` z ) } ~~ { z } -> { ( F ` z ) } ~<_ { z } ) |
| 49 |
|
domtrfi |
|- ( ( { ( F ` z ) } e. Fin /\ ( F " { z } ) ~<_ { ( F ` z ) } /\ { ( F ` z ) } ~<_ { z } ) -> ( F " { z } ) ~<_ { z } ) |
| 50 |
34 49
|
mp3an1 |
|- ( ( ( F " { z } ) ~<_ { ( F ` z ) } /\ { ( F ` z ) } ~<_ { z } ) -> ( F " { z } ) ~<_ { z } ) |
| 51 |
48 50
|
sylan2 |
|- ( ( ( F " { z } ) ~<_ { ( F ` z ) } /\ { ( F ` z ) } ~~ { z } ) -> ( F " { z } ) ~<_ { z } ) |
| 52 |
44 47 51
|
sylancl |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) ~<_ { z } ) |
| 53 |
38 52
|
eqbrtrd |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( _I ` ( F " { z } ) ) ~<_ { z } ) |
| 54 |
|
simplr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> -. z e. y ) |
| 55 |
|
disjsn |
|- ( ( y i^i { z } ) = (/) <-> -. z e. y ) |
| 56 |
54 55
|
sylibr |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( y i^i { z } ) = (/) ) |
| 57 |
|
undom |
|- ( ( ( ( F " y ) ~<_ y /\ ( _I ` ( F " { z } ) ) ~<_ { z } ) /\ ( y i^i { z } ) = (/) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) ~<_ ( y u. { z } ) ) |
| 58 |
42 53 56 57
|
syl21anc |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) ~<_ ( y u. { z } ) ) |
| 59 |
41 58
|
eqbrtrrd |
|- ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) |
| 60 |
59
|
exp32 |
|- ( ( y e. Fin /\ -. z e. y ) -> ( F Fn A -> ( ( F " y ) ~<_ y -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) |
| 61 |
60
|
a2d |
|- ( ( y e. Fin /\ -. z e. y ) -> ( ( F Fn A -> ( F " y ) ~<_ y ) -> ( F Fn A -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) |
| 62 |
8 12 16 20 23 61
|
findcard2s |
|- ( A e. Fin -> ( F Fn A -> ( F " A ) ~<_ A ) ) |
| 63 |
|
fofn |
|- ( F : A -onto-> B -> F Fn A ) |
| 64 |
62 63
|
impel |
|- ( ( A e. Fin /\ F : A -onto-> B ) -> ( F " A ) ~<_ A ) |
| 65 |
2 64
|
eqbrtrrd |
|- ( ( A e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |