| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fofn |  |-  ( F : A -onto-> B -> F Fn A ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> F Fn A ) | 
						
							| 3 |  | forn |  |-  ( F : A -onto-> B -> ran F = B ) | 
						
							| 4 |  | eqimss2 |  |-  ( ran F = B -> B C_ ran F ) | 
						
							| 5 | 3 4 | syl |  |-  ( F : A -onto-> B -> B C_ ran F ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B C_ ran F ) | 
						
							| 7 |  | simp2 |  |-  ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B e. Fin ) | 
						
							| 8 |  | fipreima |  |-  ( ( F Fn A /\ B C_ ran F /\ B e. Fin ) -> E. x e. ( ~P A i^i Fin ) ( F " x ) = B ) | 
						
							| 9 | 2 6 7 8 | syl3anc |  |-  ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> E. x e. ( ~P A i^i Fin ) ( F " x ) = B ) | 
						
							| 10 |  | elinel2 |  |-  ( x e. ( ~P A i^i Fin ) -> x e. Fin ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) | 
						
							| 12 |  | finnum |  |-  ( x e. Fin -> x e. dom card ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x e. dom card ) | 
						
							| 14 |  | simpl3 |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> F : A -onto-> B ) | 
						
							| 15 |  | fofun |  |-  ( F : A -onto-> B -> Fun F ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> Fun F ) | 
						
							| 17 |  | elinel1 |  |-  ( x e. ( ~P A i^i Fin ) -> x e. ~P A ) | 
						
							| 18 | 17 | elpwid |  |-  ( x e. ( ~P A i^i Fin ) -> x C_ A ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x C_ A ) | 
						
							| 20 |  | fof |  |-  ( F : A -onto-> B -> F : A --> B ) | 
						
							| 21 |  | fdm |  |-  ( F : A --> B -> dom F = A ) | 
						
							| 22 | 14 20 21 | 3syl |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> dom F = A ) | 
						
							| 23 | 19 22 | sseqtrrd |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x C_ dom F ) | 
						
							| 24 |  | fores |  |-  ( ( Fun F /\ x C_ dom F ) -> ( F |` x ) : x -onto-> ( F " x ) ) | 
						
							| 25 | 16 23 24 | syl2anc |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( F |` x ) : x -onto-> ( F " x ) ) | 
						
							| 26 |  | fodomnum |  |-  ( x e. dom card -> ( ( F |` x ) : x -onto-> ( F " x ) -> ( F " x ) ~<_ x ) ) | 
						
							| 27 | 13 25 26 | sylc |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( F " x ) ~<_ x ) | 
						
							| 28 |  | simpl1 |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> A e. V ) | 
						
							| 29 |  | ssdomg |  |-  ( A e. V -> ( x C_ A -> x ~<_ A ) ) | 
						
							| 30 | 28 19 29 | sylc |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> x ~<_ A ) | 
						
							| 31 |  | domtr |  |-  ( ( ( F " x ) ~<_ x /\ x ~<_ A ) -> ( F " x ) ~<_ A ) | 
						
							| 32 | 27 30 31 | syl2anc |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( F " x ) ~<_ A ) | 
						
							| 33 |  | breq1 |  |-  ( ( F " x ) = B -> ( ( F " x ) ~<_ A <-> B ~<_ A ) ) | 
						
							| 34 | 32 33 | syl5ibcom |  |-  ( ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( F " x ) = B -> B ~<_ A ) ) | 
						
							| 35 | 34 | rexlimdva |  |-  ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> ( E. x e. ( ~P A i^i Fin ) ( F " x ) = B -> B ~<_ A ) ) | 
						
							| 36 | 9 35 | mpd |  |-  ( ( A e. V /\ B e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |