| Step | Hyp | Ref | Expression | 
						
							| 1 |  | foima |  |-  ( F : A -onto-> B -> ( F " A ) = B ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. Fin /\ F : A -onto-> B ) -> ( F " A ) = B ) | 
						
							| 3 |  | imaeq2 |  |-  ( x = (/) -> ( F " x ) = ( F " (/) ) ) | 
						
							| 4 |  | ima0 |  |-  ( F " (/) ) = (/) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( x = (/) -> ( F " x ) = (/) ) | 
						
							| 6 |  | id |  |-  ( x = (/) -> x = (/) ) | 
						
							| 7 | 5 6 | breq12d |  |-  ( x = (/) -> ( ( F " x ) ~<_ x <-> (/) ~<_ (/) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( x = (/) -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> (/) ~<_ (/) ) ) ) | 
						
							| 9 |  | imaeq2 |  |-  ( x = y -> ( F " x ) = ( F " y ) ) | 
						
							| 10 |  | id |  |-  ( x = y -> x = y ) | 
						
							| 11 | 9 10 | breq12d |  |-  ( x = y -> ( ( F " x ) ~<_ x <-> ( F " y ) ~<_ y ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( x = y -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " y ) ~<_ y ) ) ) | 
						
							| 13 |  | imaeq2 |  |-  ( x = ( y u. { z } ) -> ( F " x ) = ( F " ( y u. { z } ) ) ) | 
						
							| 14 |  | id |  |-  ( x = ( y u. { z } ) -> x = ( y u. { z } ) ) | 
						
							| 15 | 13 14 | breq12d |  |-  ( x = ( y u. { z } ) -> ( ( F " x ) ~<_ x <-> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( x = ( y u. { z } ) -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) | 
						
							| 17 |  | imaeq2 |  |-  ( x = A -> ( F " x ) = ( F " A ) ) | 
						
							| 18 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 19 | 17 18 | breq12d |  |-  ( x = A -> ( ( F " x ) ~<_ x <-> ( F " A ) ~<_ A ) ) | 
						
							| 20 | 19 | imbi2d |  |-  ( x = A -> ( ( F Fn A -> ( F " x ) ~<_ x ) <-> ( F Fn A -> ( F " A ) ~<_ A ) ) ) | 
						
							| 21 |  | 0ex |  |-  (/) e. _V | 
						
							| 22 | 21 | 0dom |  |-  (/) ~<_ (/) | 
						
							| 23 | 22 | a1i |  |-  ( F Fn A -> (/) ~<_ (/) ) | 
						
							| 24 |  | fnfun |  |-  ( F Fn A -> Fun F ) | 
						
							| 25 | 24 | ad2antrl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> Fun F ) | 
						
							| 26 |  | funressn |  |-  ( Fun F -> ( F |` { z } ) C_ { <. z , ( F ` z ) >. } ) | 
						
							| 27 |  | rnss |  |-  ( ( F |` { z } ) C_ { <. z , ( F ` z ) >. } -> ran ( F |` { z } ) C_ ran { <. z , ( F ` z ) >. } ) | 
						
							| 28 | 25 26 27 | 3syl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ran ( F |` { z } ) C_ ran { <. z , ( F ` z ) >. } ) | 
						
							| 29 |  | df-ima |  |-  ( F " { z } ) = ran ( F |` { z } ) | 
						
							| 30 |  | vex |  |-  z e. _V | 
						
							| 31 | 30 | rnsnop |  |-  ran { <. z , ( F ` z ) >. } = { ( F ` z ) } | 
						
							| 32 | 31 | eqcomi |  |-  { ( F ` z ) } = ran { <. z , ( F ` z ) >. } | 
						
							| 33 | 28 29 32 | 3sstr4g |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) C_ { ( F ` z ) } ) | 
						
							| 34 |  | snex |  |-  { ( F ` z ) } e. _V | 
						
							| 35 |  | ssexg |  |-  ( ( ( F " { z } ) C_ { ( F ` z ) } /\ { ( F ` z ) } e. _V ) -> ( F " { z } ) e. _V ) | 
						
							| 36 | 33 34 35 | sylancl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) e. _V ) | 
						
							| 37 |  | fvi |  |-  ( ( F " { z } ) e. _V -> ( _I ` ( F " { z } ) ) = ( F " { z } ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( _I ` ( F " { z } ) ) = ( F " { z } ) ) | 
						
							| 39 | 38 | uneq2d |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) = ( ( F " y ) u. ( F " { z } ) ) ) | 
						
							| 40 |  | imaundi |  |-  ( F " ( y u. { z } ) ) = ( ( F " y ) u. ( F " { z } ) ) | 
						
							| 41 | 39 40 | eqtr4di |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) = ( F " ( y u. { z } ) ) ) | 
						
							| 42 |  | simprr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " y ) ~<_ y ) | 
						
							| 43 |  | ssdomg |  |-  ( { ( F ` z ) } e. _V -> ( ( F " { z } ) C_ { ( F ` z ) } -> ( F " { z } ) ~<_ { ( F ` z ) } ) ) | 
						
							| 44 | 34 33 43 | mpsyl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) ~<_ { ( F ` z ) } ) | 
						
							| 45 |  | fvex |  |-  ( F ` z ) e. _V | 
						
							| 46 | 45 | ensn1 |  |-  { ( F ` z ) } ~~ 1o | 
						
							| 47 | 30 | ensn1 |  |-  { z } ~~ 1o | 
						
							| 48 | 46 47 | entr4i |  |-  { ( F ` z ) } ~~ { z } | 
						
							| 49 |  | domentr |  |-  ( ( ( F " { z } ) ~<_ { ( F ` z ) } /\ { ( F ` z ) } ~~ { z } ) -> ( F " { z } ) ~<_ { z } ) | 
						
							| 50 | 44 48 49 | sylancl |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " { z } ) ~<_ { z } ) | 
						
							| 51 | 38 50 | eqbrtrd |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( _I ` ( F " { z } ) ) ~<_ { z } ) | 
						
							| 52 |  | simplr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> -. z e. y ) | 
						
							| 53 |  | disjsn |  |-  ( ( y i^i { z } ) = (/) <-> -. z e. y ) | 
						
							| 54 | 52 53 | sylibr |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( y i^i { z } ) = (/) ) | 
						
							| 55 |  | undom |  |-  ( ( ( ( F " y ) ~<_ y /\ ( _I ` ( F " { z } ) ) ~<_ { z } ) /\ ( y i^i { z } ) = (/) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) ~<_ ( y u. { z } ) ) | 
						
							| 56 | 42 51 54 55 | syl21anc |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( ( F " y ) u. ( _I ` ( F " { z } ) ) ) ~<_ ( y u. { z } ) ) | 
						
							| 57 | 41 56 | eqbrtrrd |  |-  ( ( ( y e. Fin /\ -. z e. y ) /\ ( F Fn A /\ ( F " y ) ~<_ y ) ) -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) | 
						
							| 58 | 57 | exp32 |  |-  ( ( y e. Fin /\ -. z e. y ) -> ( F Fn A -> ( ( F " y ) ~<_ y -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) | 
						
							| 59 | 58 | a2d |  |-  ( ( y e. Fin /\ -. z e. y ) -> ( ( F Fn A -> ( F " y ) ~<_ y ) -> ( F Fn A -> ( F " ( y u. { z } ) ) ~<_ ( y u. { z } ) ) ) ) | 
						
							| 60 | 8 12 16 20 23 59 | findcard2s |  |-  ( A e. Fin -> ( F Fn A -> ( F " A ) ~<_ A ) ) | 
						
							| 61 |  | fofn |  |-  ( F : A -onto-> B -> F Fn A ) | 
						
							| 62 | 60 61 | impel |  |-  ( ( A e. Fin /\ F : A -onto-> B ) -> ( F " A ) ~<_ A ) | 
						
							| 63 | 2 62 | eqbrtrrd |  |-  ( ( A e. Fin /\ F : A -onto-> B ) -> B ~<_ A ) |