| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fof |  |-  ( f : A -onto-> B -> f : A --> B ) | 
						
							| 2 | 1 | fdmd |  |-  ( f : A -onto-> B -> dom f = A ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( f : A -onto-> B -> ( dom f = (/) <-> A = (/) ) ) | 
						
							| 4 |  | dm0rn0 |  |-  ( dom f = (/) <-> ran f = (/) ) | 
						
							| 5 |  | forn |  |-  ( f : A -onto-> B -> ran f = B ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( f : A -onto-> B -> ( ran f = (/) <-> B = (/) ) ) | 
						
							| 7 | 4 6 | bitrid |  |-  ( f : A -onto-> B -> ( dom f = (/) <-> B = (/) ) ) | 
						
							| 8 | 3 7 | bitr3d |  |-  ( f : A -onto-> B -> ( A = (/) <-> B = (/) ) ) | 
						
							| 9 | 8 | necon3bid |  |-  ( f : A -onto-> B -> ( A =/= (/) <-> B =/= (/) ) ) | 
						
							| 10 | 9 | biimpac |  |-  ( ( A =/= (/) /\ f : A -onto-> B ) -> B =/= (/) ) | 
						
							| 11 | 10 | adantll |  |-  ( ( ( A e. Fin /\ A =/= (/) ) /\ f : A -onto-> B ) -> B =/= (/) ) | 
						
							| 12 |  | vex |  |-  f e. _V | 
						
							| 13 | 12 | rnex |  |-  ran f e. _V | 
						
							| 14 | 5 13 | eqeltrrdi |  |-  ( f : A -onto-> B -> B e. _V ) | 
						
							| 15 | 14 | adantl |  |-  ( ( A e. Fin /\ f : A -onto-> B ) -> B e. _V ) | 
						
							| 16 |  | 0sdomg |  |-  ( B e. _V -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( A e. Fin /\ f : A -onto-> B ) -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( A e. Fin /\ A =/= (/) ) /\ f : A -onto-> B ) -> ( (/) ~< B <-> B =/= (/) ) ) | 
						
							| 19 | 11 18 | mpbird |  |-  ( ( ( A e. Fin /\ A =/= (/) ) /\ f : A -onto-> B ) -> (/) ~< B ) | 
						
							| 20 | 19 | ex |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( f : A -onto-> B -> (/) ~< B ) ) | 
						
							| 21 |  | fodomfi |  |-  ( ( A e. Fin /\ f : A -onto-> B ) -> B ~<_ A ) | 
						
							| 22 | 21 | ex |  |-  ( A e. Fin -> ( f : A -onto-> B -> B ~<_ A ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( f : A -onto-> B -> B ~<_ A ) ) | 
						
							| 24 | 20 23 | jcad |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( f : A -onto-> B -> ( (/) ~< B /\ B ~<_ A ) ) ) | 
						
							| 25 | 24 | exlimdv |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( E. f f : A -onto-> B -> ( (/) ~< B /\ B ~<_ A ) ) ) | 
						
							| 26 | 25 | expimpd |  |-  ( A e. Fin -> ( ( A =/= (/) /\ E. f f : A -onto-> B ) -> ( (/) ~< B /\ B ~<_ A ) ) ) | 
						
							| 27 |  | 0fi |  |-  (/) e. Fin | 
						
							| 28 |  | sdomdomtrfi |  |-  ( ( (/) e. Fin /\ (/) ~< B /\ B ~<_ A ) -> (/) ~< A ) | 
						
							| 29 | 27 28 | mp3an1 |  |-  ( ( (/) ~< B /\ B ~<_ A ) -> (/) ~< A ) | 
						
							| 30 |  | 0sdomg |  |-  ( A e. Fin -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 31 | 29 30 | imbitrid |  |-  ( A e. Fin -> ( ( (/) ~< B /\ B ~<_ A ) -> A =/= (/) ) ) | 
						
							| 32 |  | fodomfir |  |-  ( ( A e. Fin /\ (/) ~< B /\ B ~<_ A ) -> E. f f : A -onto-> B ) | 
						
							| 33 | 32 | 3expib |  |-  ( A e. Fin -> ( ( (/) ~< B /\ B ~<_ A ) -> E. f f : A -onto-> B ) ) | 
						
							| 34 | 31 33 | jcad |  |-  ( A e. Fin -> ( ( (/) ~< B /\ B ~<_ A ) -> ( A =/= (/) /\ E. f f : A -onto-> B ) ) ) | 
						
							| 35 | 26 34 | impbid |  |-  ( A e. Fin -> ( ( A =/= (/) /\ E. f f : A -onto-> B ) <-> ( (/) ~< B /\ B ~<_ A ) ) ) |