Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | foelrni | |- ( ( F : A -onto-> B /\ Y e. B ) -> E. x e. A ( F ` x ) = Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
2 | 1 | eleq2d | |- ( F : A -onto-> B -> ( Y e. ran F <-> Y e. B ) ) |
3 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
4 | fvelrnb | |- ( F Fn A -> ( Y e. ran F <-> E. x e. A ( F ` x ) = Y ) ) |
|
5 | 3 4 | syl | |- ( F : A -onto-> B -> ( Y e. ran F <-> E. x e. A ( F ` x ) = Y ) ) |
6 | 2 5 | bitr3d | |- ( F : A -onto-> B -> ( Y e. B <-> E. x e. A ( F ` x ) = Y ) ) |
7 | 6 | biimpa | |- ( ( F : A -onto-> B /\ Y e. B ) -> E. x e. A ( F ` x ) = Y ) |