Metamath Proof Explorer


Theorem foelrni

Description: A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020)

Ref Expression
Assertion foelrni
|- ( ( F : A -onto-> B /\ Y e. B ) -> E. x e. A ( F ` x ) = Y )

Proof

Step Hyp Ref Expression
1 forn
 |-  ( F : A -onto-> B -> ran F = B )
2 1 eleq2d
 |-  ( F : A -onto-> B -> ( Y e. ran F <-> Y e. B ) )
3 fofn
 |-  ( F : A -onto-> B -> F Fn A )
4 fvelrnb
 |-  ( F Fn A -> ( Y e. ran F <-> E. x e. A ( F ` x ) = Y ) )
5 3 4 syl
 |-  ( F : A -onto-> B -> ( Y e. ran F <-> E. x e. A ( F ` x ) = Y ) )
6 2 5 bitr3d
 |-  ( F : A -onto-> B -> ( Y e. B <-> E. x e. A ( F ` x ) = Y ) )
7 6 biimpa
 |-  ( ( F : A -onto-> B /\ Y e. B ) -> E. x e. A ( F ` x ) = Y )