Metamath Proof Explorer


Theorem fonum

Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion fonum
|- ( ( A e. dom card /\ F : A -onto-> B ) -> B e. dom card )

Proof

Step Hyp Ref Expression
1 fodomnum
 |-  ( A e. dom card -> ( F : A -onto-> B -> B ~<_ A ) )
2 1 imp
 |-  ( ( A e. dom card /\ F : A -onto-> B ) -> B ~<_ A )
3 numdom
 |-  ( ( A e. dom card /\ B ~<_ A ) -> B e. dom card )
4 2 3 syldan
 |-  ( ( A e. dom card /\ F : A -onto-> B ) -> B e. dom card )